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Abstract

This thesis applies the concepts of forward modelling and Bayesian probabilistic analysis to

Tokamak plasmas at the Joint European Torus (JET). The techniques are used to greatly im-

prove the accuracy of important plasma parameters and examine plasma physics from existing

data that has not been possible with standard methods. Models of the JET interferometry and

polarimetry diagnostics are developed and used to asses approximations given in two competing

theoretical papers and constitute the first observation of relativistic effects on fusion relevant

plasma polarimetry. A highly detailed model is developed for two LIDAR Thomson Scattering

diagnostics and combined with the interferometer to infer electron density and temperature

profiles with greatly improved accuracy and rigorously quantified uncertainties from all known

sources, including uncertainty in the magnetic topology and diagnostic calibrations. The ability

to easily cope with a combination of complex systems including unknown calibration param-

eters is demonstrated. High resolution information inferred about the plasma edge is used to

examine the evolution of the H-Mode pedestal in JET plasmas. Bayesian principles are then

used to investigate the extent of the information that can be inferred about the plasma cur-

rent profile from external magnetic diagnostics and the assumption of magneto-hydrodynamic

equilibrium. It is shown that a great deal more about the current near the plasma edge can be

inferred than was previously thought possible. The presence of the thin layer of high current in

the H-mode pedestal is shown and the magnitude variation of the parallel and perpendicular

components of this are inferred. The latter is compared to the kinetic measurements, showing

surprisingly good agreement.
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0.3. Thesis Overview

This thesis applies the concepts of forward modelling and Bayesian probabilistic analysis to

Tokamak plasmas at the Joint European Torus (JET), greatly improving the accuracy in the

inference of important plasma parameters. The techniques are used to extract important

quantities and examine plasma physics from existing data that has not been possible with

standard methods. This includes the observation of relativistic effects in plasma polarimetry,

high resolution examination of the H-mode pedestal, exploration of experimental equilibria and

inference of the pedestal current from magnetic measurements alone.

Chapter 1 introduces fusion, the Tokamak and the basic Tokamak physics relevant to the

investigations throughout the rest of the document and chapter 2 introduces the analysis

concepts and computation methods and their advantages over standard approaches.

Chapters 3 introduces the specific physics and system details of the Interferometry and Po-

larimetry diagnostics, then describes the development of their models. Chapter 4 demonstrates

the use of the interferometry model to infer electron density profiles with rigorous uncertainties

as well as the extraction of magnetic topology information, which is not normally considered,

through the assumption of constancy of density on flux surfaces. This is then used with

the polarimetry diagnostic model to asses approximations given in two competing theoretical

papers. This makes the first observation of relativistic plasma polarimetry effects in fusion

relevant plasmas, an effect far smaller than the noise level of the diagnostic and not previously

confirmed using standard approaches.

Chapter 5 concerns the two LIDAR Thomson Scattering diagnostics at JET. A highly de-
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tailed model is developed including every part of the measurement system and every contribu-

tion to the collected data. The two models are combined with the interferometry model and

used to infer electron density and temperature profiles with greatly improved accuracy over

the standard analysis methods. The ability to easily cope with the combination of complex

systems including some uncertain and some unknown calibration parameters is demonstrated,

showing that these can be automatically inferred from the data and self-consistency alone.

Accurate estimates of other calibration parameters are extracted directly from the data using

a verity of methods. A model for the magnetic diagnostics (developed elsewhere) is included

in the combination to allow the proper inclusion of magnetic topology uncertainties - a central

and recurring problem of Tokamak analysis that is rarely rigorously assessed. High resolution

information is inferred about the plasma edge and is used to examine the H-Mode pedestal

a vitally important part of Tokamak plasma physics in the progression toward fusion power

plants.

In Chapter 6, Bayesian principles are used to investigate what can really be inferred about

the plasma current profile from external magnetic diagnostics and the assumption of magneto-

hydrodynamic equilibrium - a subject that has been widely debated theoretically. It is shown

clearly that a great deal more about the current towards the plasma edge can be inferred than

was previously thought possible. The presence of the thin layer of high current in the H-mode

pedestal is shown and the magnitude variation of the parallel and perpendicular components

of this are inferred. The latter is compared to the kinetic measurements, showing surprisingly

good agreement.

0.4. Other Publications of this work

The work in this thesis has been presented at two conferences by myself and is the subject of

two published journal articles and one conference proceedings paper. The interferometry and

polarimetry modelling of chapters 3 and 4 was presented at the High Temperature Plasma Di-

agnostics (HTPD) conference, Albuquerque, New Mexico USA in 2008 and was consequently

published in Review of Scientific Instruments [1]. The investigation of relativistic plasma

polarimetry effects with the JET polarimetry data was published in Plasma Physics And Con-

trolled Fusion (PPCF) [2] in 2009 and this paper was selected for both the Institute of Physics

’IOP Select’ and PPCF highlights 2009. The LIDAR Thomson Scattering modelling and initial

results were presented at the European Physics Society (EPS) plasma physics conference in

Sofia, Bulgaria in 2009 [3].
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Dr Jakob Svensson presented some of the results from this work, in an overview of the wider

project at the 2010 EPS plasma physics conference [4], on which I was named as a secondary

author.

0.5. Notation and Terminology

Throughout this text, vector quantities are denoted by a single underline, e.g. x and matrix

quantities with two underlines, e.g. m. Normal and Gaussian (not normalised) distributions

are represented with G
(
x; x0, σ

)
, denoting that x follows a Gaussian distribution about the

mean x0 with covariance matrix given by σ. The σ symbol is used for covariance matrices

throughout but the scalar σ is used to refer to a standard deviation. For all parts, the raw

data of a diagnostic system is represented with D, with a sub/superscript identifying the

system.

Chapters 1 and 2 cover the definition of many terms from Bayesian Analysis, from the

Tokamak community and some specific to this document. For ease of reference, a glossary is

included in Appendix C which gives the meaning and page number of the original definition,

for many of these.
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1.1. FUSION

1.1. Fusion

Among the greatest of recent issues is that of energy production. For the past century, this

has primarily been supplied by the burning of fossil fuels, but concerns over the effect this has

on the climate as well as their rapidly diminishing supply given the predicted growth of world

energy requirement has placed considerable emphasis on finding a more sustainable and less

damaging alternative.

Over the second half of the last century nuclear fission, which harnesses the energy released

from the splitting of a heavy element into two lighter elements, has also been heavily used.

While fission has a vastly greater fuel energy density and does not carry the climate change

problems of fossil fuels, it has its own set of issues. The raw fuel for nuclear fission is much

more abundant than that of fossil fuels but it is still limited, disposal of the highly radioactive

waste products of the fission process is extremely difficult and the safety of fission reactors has

to be treated carefully. A typical fission reactor will contain enough fuel for a long period of

production and failure to control the reaction has in the past resulted in large scale accidents

releasing radioactive material into the atmosphere.

Nuclear fusion, where energy is produced from the combination of two light elements into a

heavier one, promises to provide a long-term alternative. The process has the same high fuel

energy density but, unlike fission, the waste products of the most ideal reactions are not long-

term radioactive and the proposed reactor designs contain only a tiny amount of fuel making

large scale accidents impossible. The greatest energy release from fusion is achieved by fusing

the lightest elements. Given its abundance on earth, hydrogen would be the obvious choice

and fusion beginning from hydrogen is the principal source of energy in stars. Unfortunately

the reaction involves several stages and the overall cross-section is too low to be of practical

terrestrial use. Reactions involving the first two heavy isotopes of hydrogen, deuterium (D)

and tritium (T) are more practical, and are shown in table 1.1 along with their output energy.

Reactions 1 and 2 occur at equal rates.

1) D +D −→ 3He (0.82 MeV) + n (2.45 MeV)

2) D +D −→ T (1.01 MeV) + H (3.02 MeV)

3) D + T −→ 4He (3.50 MeV) + n (14.1 MeV )

4) n+6Li −→ T + 4He
5) n+7Li −→ T + 4He + n

Table 1.1.: Reactions of use for fusion power generation.

Deuterium is abundant on earth as 1 part in 6500 of hydrogen in typical water. Tritium is

hard to find naturally but can be produced from lithium, itself in reasonably plentiful supply,
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1.1. FUSION

by reactions 4 or 5. It is proposed that this process will take place inside a fusion reactor.

For a mixture of D and/or T in thermal equilibrium, reactions can be initiated by the thermal

motion of the particles. This is known as thermonuclear fusion and the total output power is

given by:

Pfusion = (Reaction rate)× E = n1n2 〈σv〉E (1.1)

Where the ni are the density of reacting species, 〈σv〉 is the thermal average of the product of

velocity and cross-section and E is the usable energy released from each reaction.

To obtain a useful power output, thermonuclear fusion requires either very high density (as is

found in the core of the Sun), or very high average cross-section and hence high temperature.

For a self sustaining reaction the generated power needs to be at least equal to the power

being lost from the fuel mixture. This is called the point of ’ignition’. Typically, the power

loss is dependent on the total thermal energy W of the fuel mixture and this dependence is

characterised by the energy confinement time τE by Ploss = W
τE

. Balancing these leads to

equation 1.2

n1n2 〈σv〉E ≥
3 (ne + ni) kBT

2τE
(1.2)

For a 50-50 mix of D or T, ne = ni = 2n1 = 2n2 and so this becomes:

neτE ≥
12

E

kBT

〈σv〉
(1.3)

This requirement on density and confinement time for any given temperature was first derived

by Lawson [5] and is widely known as the Lawson Criterion. The temperature which gives the

lowest requirement is where kBT/ 〈σv〉 is a minimum. This is 2×108K for D−D and 3×107K

for D−T . The term E is simply the energy output of a single reaction but unfortunately, while

the energy released in the neutral products can be harnessed, it is difficult to keep them inside

the reacting region of any reactor and so it can not contribute to heating the fuel. This means

E must be set only to the charged product energies. With this included, equation 1.4 gives

Lawson’s criterion for D-T and D-D at these temperatures.

D-D: neτE ≥ 1022sm−3[5] (1.4)

D-T (50/50 mix): neτE ≥ 1020sm−3

It is clear the D-T would be the preferable choice due to the lower optimum temperature and

lower requirement at this temperature. However, a complication arises when τE depends on
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T which is often the case in proposed reactors. It is then convenient to find a requirement on

n and τE (T ) for ignition which does not itself depend on T . The thermonuclear cross-section

for D−T can be approximated by 〈σv〉 ≈ 1.1× 10−24T 2 [6] with T expressed in keV (and kB

included in the constant). This approximation is valid between 10keV and 20keV. Entering

this into equation 1.3 gives, for D − T :

neτET ≥ 3× 1021m−3skeV (1.5)

The left hand side is known as the fusion triple product and the triple product achieved by an

experimental reactor is often used to asses how close to fusion ignition it is.
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1.2. The Tokamak

The temperatures required for fusion are so high that contact with any solid material surfaces

used to contain the reacting fuels would cause intolerable damage to those surfaces. There

are three ways in which the reacting fuels can feasibly be contained without solid materials.

Gravitation confinement occurs in stars, where the fuels are naturally compressed to high

density and temperature by the star’s own gravity. In inertial confinement, high power lasers

are used to rapidly heat a small capsule of solid fuel, either directly or via x-rays generated

by heating an enclosure. Fusion takes place in the high pressure created before the fuel has

time to expand. Finally, in magnetic confinement fusion, gaseous fuels are ionised to become

a plasma and the charged particles confined using magnetic fields.

Initially, cylindrical ’Z-pinches’ were developed in which the plasma is forced toward the

centre by a plasma current driven along the cylinder. To avoid losses at the ends, the cylinder

is bent around to meet itself and form a toroidal pinch in which the pinch effect is provided

by a current driven around the torus. A metal loop passes through the centre of the torus and

through an external winding in which a current is driven, driving the plasma current Ip in a

similar way to a transformer. The plasma current creates a poloidal magnetic field Bθ as shown

in figure 1.1a and the movement of the charged particles in this field creates a force toward

the centre of the poloidal cross-section of the plasma. This configuration is very unstable but

can be stabilised by adding a field in the toroidal direction Bt using external coils as shown in

1.1b. The combination of the two fields is the basic principle of the tokamak.

Figure 1.1.: Basic magnetic configuration of the Tokamak. a) Poloidal field created by plasma
current. b) Toroidal field created by external coils. c) Combination of the two re-
sulting in nested magnetic surfaces. d) Definition of poloidal magnetic flux ψ(R,Z)

For most tokamaks, there are many toroidal field (TF) coils and the variation in the toroidal

field around the tokamak, known as ripple, is very small (less than 1%). The field is usually

approximated as a toroidally symmetric average field Bφ. The combination of this and Bθ

results in toroidally symmetric helical field lines which pass around the torus eventually joining

up on themselves. These lines describe an infinite set of nested toroidal surfaces as shown in
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1.2. THE TOKAMAK

1.1c, along with the coordinate system (R,φ, Z) usually used in experimental tokamak physics.

The Bφ field can also have a contribution from poloidal currents inside the plasma, which

increase or decrease that from the TF coils, which is known as the vacuum toroidal field.

Flux Surfaces

It is useful to define the poloidal magnetic flux ψ(R,Z), as the integral of the poloidal field

through a surface (shown in figure 1.1d) from some fixed reference point (Ra, Za) in the poloidal

plane to the point in question (R,Z), covering 1 radian in the toroidal direction. For the

toroidally symmetric tokamak, ψ is constant everywhere on each magnetic surface, giving the

surfaces the name flux surfaces. The choice of (Ra, Za) changes ψ only by a constant value

and is usually chosen as (0, 0). The outermost complete flux surface which does not come into

contact with a physical surface is known as the last closed flux surface (LCFS) and the centre

of the set is known as the magnetic axis. The average pitch of the magnetic field on each

surface is related to the safety factor q which can be defined as the number of times a field

line on the surface goes around toroidally for a given number of times poloidally. The name

is given because the value has important effects on the stability of the configuration. Surfaces

where q is a low order rational fraction play a special role as individual field lines cover only

part of the surface.

Shaping and configuration

The poloidal field also has a large contribution from several external shaping and stabilisation

coils, known as PF coils, which also carry a toroidal current. These are used to control the

position and shape of the main bulk of the plasma, usually approximately described in terms

of its position (R0, Z0), minor radius a, elongation (κ) and triangularity (δ). The PF coils are

also used to react to oppose a violent instability where the plasma undergoes a rapid vertical

displacement.

In the simplest configuration, shown in figure 1.2a, the plasma boundary is defined by direct

contact with the solid material walls. This will be somewhere on the first wall, which is the path

in the poloidal plane which traces the nearest material surface, at any toroidal location, to the

approximately axisymmetric plasma. The majority of plasma leaving the bulk will impact this

part of the wall, causing significant heat, damage and sputtering where neutral particles of the

solid material are released and migrate into the bulk plasma. These impurities are then ionised

by collisions with the plasma. The high Z elements become only partially ionised and radiate

a large part of the plasma energy, cooling it significantly. To reduce this, the configuration is
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1.2. THE TOKAMAK

set so that first contact is made with a special set of tiles made from materials either resilient

to sputtering or of low-Z elements - called a limiter.

Many tokamaks have a set of PF coils close to the top and/or bottom of the vessel which

can be used to create a zero point in the total poloidal field (also known as an X-point). This

is used to create a diverted plasma, where the LCFS passes through the X-point and is known

as the separatrix. In this configuration, the first open surface contacts the first wall away from

the bulk of the plasma. This reduces the impurities entering the plasma. In many modern

tokamaks, these strike points are arranged to be in a partially enclosed part of the vessel, called

the divertor, which further reduces impurities. Figure 1.2b and c show the flux surfaces for

the diverted configuration and the names of the parts of the plasma including the surfaces just

outside the LCFS through which charged plasma leaves the bulk plasma, known as the scrape

off layer (SOL).
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Figure 1.2.: a) Limited plasma, b) Low triangularity divertor plasma, c) High triangularity
divertor plasma.
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1.3. Tokamak Equilibrium

1.3.1. The poloidal current flux - f

As described in the previous section, the poloidal magnetic flux ψ(R,Z) is defined in the terms

of the integral of the poloidal field Bθ = (BR, 0, BZ) passing through a toroidally symmetric

surface, defined by a line from a fixed point to (R,Z) in the poloidal plane. The poloidal field

can therefore be written as:

Bθ =
1

R
∇ψ × φ̂ (1.6)

The poloidal current flux f(R,Z) can be defined in the same way and the poloidal current

Jθ written as:

Jθ =
1

R
∇f × φ̂ (1.7)

= − 1

R

∂f

∂Z
R̂ +

1

R

∂f

∂R
Ẑ (1.8)

For slowly time-varying plasmas, where there are no large rapidly changing electric fields, B

and J are related via Ampere’s law. For toroidally symmetric plasmas (∂/∂φ = 0), this is:

µ0J = ∇ × B = −∂Bφ
∂Z

R̂ +

(
∂BR
∂Z

− ∂BZ
∂R

)
φ̂+

1

R

∂ (RBφ)

∂R
Ẑ (1.9)

Equating the poloidal components of this with Jθ from equation 1.8 gives the relation between

f and the toroidal field:

µ0f = RBφ (1.10)

With no plasma, the current flux is constant everywhere inside the toroidal field coils f = f0

giving the vacuum toroidal field Bvac
φ = µ0f0/R.

1.3.2. Low flow MHD equilibrium

Under the assumptions of Magneto-hydrodynamics (MHD) and assuming an isotropic scalar

pressure p, the evolution of the plasma conditions is given by the MHD momentum equation:

ρ

[
∂v

∂t
+ (v · ∇) v

]
= J× B−∇p (1.11)

One of the simplest but most useful observations of the plasma in machines like JET is that

the plasma is usually stable and the plasma density, temperature and most other quantities do
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not experience large rapid changes. The time derivatives ∂/∂t must therefore be small. It is

also common to assume that the plasma fluid velocity v is small, in which case the momentum

equation reduces to implying a balance between the Lorentz force and the pressure gradient

force:

J× B ' ∇p (1.12)

A derivation including both toroidal and poloidal flow can be found elsewhere[7], from which

it can be seen that the assumption of no flow is valid if the toroidal and poloidal velocities are

subsonic. For the JET tokamak, which is studied in this work, toroidal velocities observed are

vφ ∼ 100km/s with Mach numbers (ratio of fluid velocity to thermal velocity) of at most ∼ 0.5

[8] and the poloidal flows are much smaller (usually vθ < 10km/s[9]).

Equation 1.12 implies there can be no variation in pressure along field lines since B ·∇p = 0.

For most flux surfaces the field line visits the entire surface implying that the pressure must

be constant on each surface. For plasmas with little flow, pressure can therefore be written as

a function of the magnetic flux p(ψ) or more commonly, of the normalised flux ψN , which is

normalised to 0 at the magnetic axis and to 1 at the LCFS. Similarly J · ∇p = 0 implies that

there is no current perpendicular to the surfaces and so f may be written f(ψN ). In almost

all real plasmas, the magnetic flux ψ follows a monotonic function from the magnetic axis

to the LCFS making both p(ψN ) and f(ψN ) single-valued functions, though not necessarily

monotonic themselves.

Splitting equation 1.12 into toroidal and poloidal components and inserting the relations for

Jθ to f and Bθ to ψ gives:

(
1

R
∇f × φ̂

)
×Bφφ̂+ Jφφ̂×

(
1

R
∇ψ × φ̂

)
' ∇p (1.13)

Rewriting the derivatives of p and f in terms of the magnetic flux ∇f = ∂f
∂ψ∇ψ and ∇p =

∂p
∂ψ∇ψ and inserting these and equation 1.10 into equation 1.13 gives the force balance in terms

of only the toroidal current Jφ and the flux functions f and p.

− 1

R

∂f

∂ψ

µ0f

R
∇ψ +

1

R
Jφ∇ψ '

∂p

∂ψ
∇ψ

∇ψ
R

(
Jφ −

µ0

R
ff ′ −Rp′

)
' 0 (1.14)

If the equality is exact and the solution non-trivial, the ∇ψ/R terms are dropped, giving:

Jφ = Rp′ +
µ0

R
ff ′ (1.15)
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In this work, the toroidal current Jφ is treated as an underlying physical parameter, as it

relates directly to the diagnostics being analysed and ψ is calculated as a linear function of

J (detailed in section 2.5). More commonly in tokamak physics, the toroidal component of

Ampere’s law (equation 1.9) is used to rewrite Jφ as a derivative of ψ which gives the well

known Grad-Shafranov[10, 11, 12] (GS) equation for flow-free, isotropic pressure equilibria:

− 1

R

∂2ψ

∂Z2
− ∂

∂R

(
1

R

∂ψ

∂R

)
= µ0R

∂p

∂ψ
+
µ2

0

R
f
∂f

∂ψ
(1.16)

1.3.3. Grad-Shafranov solutions and EFIT

It is normal in tokamak analysis to attempt to solve the GS equation for ψ subject to boundary

conditions given by measures of ψ and ∇ψ from magnetic pick-ups and loops outside the

plasma. This requires some prescription of p′(ψ) and ff ′(ψ) since there is in general no unique

solution if ψ, p′ and ff ′ are all completely unknown. In many cases, if these are assigned

functions of only a few parameters, a solution to them and ψ can be found[13]. It is not entirely

clear in what situations such solutions are unique or what effects the crude ad-hoc assumptions

made about the profile shape have on the solution. The solution will not in general match the

boundary conditions measurements exactly and the disagreement is assumed to be entirely due

to measurement inaccuracy.

One of the most common codes used to obtain GS solutions is known as EFIT (Equilibrium

FITing) which employs a two stage iterative procedure. In the first stage, the parameters

of p′(ψ0) and ff ′(ψ0) based on fixed ψ0(R,Z) are determined by a linear fit of Jφ given by

equation 1.15 to the magnetic data. The second stage then solves equation 1.16 with these

fixed p′ and ff ′ profiles. Functional forms based on low order polynomials or a spline with low

number of knots are available and the solution can also be constrained by internal magnetic or

pressure information from other diagnostics or a-priori constraints like the specification of the

central safety factor q(0). At JET, a special version EFITJ[14] is employed which includes the

effects of the ferromagnetic iron core of the JET transformer structure.

1.3.4. Current and pressure moments

Despite the ill-defined nature of the equilibrium problem, some quantities derived from GS

solutions are always accurate, especially those that relate to low order moments of pressure

and current inside the boundary. These volume/area integrals relate directly to the line integral

of the poloidal magnetic field or flux around the boundary which is well determined by the
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external magnetic measurements. The following are moments of the toroidal current density:

� Plasma Current: Ip =
∫
Jφ dA

The toroidal current density of the plasma integrated over the whole poloidal plane.

� Current centroid position RJ0 = 1
Ip

∫
RJφ dA, ZJ0 = 1

Ip

∫
ZJφ dA

The current density weighted average position in the poloidal plane.

There are also three well determined quantities that also involve pressure and poloidal cur-

rent, known as the Shafranov integrals[15, 13] s1, s2 and s3. These provide constraints which

relate to the following physically relevant quantities:

� Average Poloidal Beta βθ = 4
µ0rcI2p

∫
pdV

The ratio of the volume integrated plasma pressure to poloidal magnetic field energy.

� Magnetisation µ =
∫

(Bφ −Bvac)/2µ0 dV

Related to energy stored in the increase or decrease of vacuum toroidal field by the plasma

poloidal current.

� Magnetic inductance lI = 1
I2p

∫
B2
θ/2µ0 dV

Related to the energy stored in the poloidal field created by the toroidal plasma current.

The first Shafranov integral s1 relates approximately to 3βθ−µ+lI , the second s2 to βθ+µ+lI

and the third s3 to 2βθ+lI . It is clear that βθ+lI/2 can be determined from these but not βθ or

li independently. There has been much discussion of what can be known about the current and

pressure inside the plasma boundary beyond these quantities. Analytical calculations [16, 17]

are restricted to simple cases and show, regardless of how accurate the magnetic measurements

are, that only Ip, s1 and s2 can be determined in an entirely cylindrical plasma and that

only a single higher moment can be known in the circular cross-section toroidal case. These

proofs do not hold for non-circular plasmas but it is argued qualitatively that higher order

moments will effect the magnetic measurements by too little to be practically measured. Such

arguments do not quantitatively asses any real uncertainties and usually overlook the accuracy

in the higher order moments that comes from having so many magnetic sensors (hundreds

in the cases examined here) all measuring the same plasma with independent random error.

More recently, the effect of the real uncertainties has begun to be investigated, such as by

assessing linear perturbations to p′ and ff ′, once an equilibrium solution has been found[18].

Experimentally and numerically, it has been shown [19] that for highly elongated (or possibly

otherwise strongly shaped) plasmas that, at the very least, βθ and li can be identified separately
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from the external poloidal magnetic field. In other cases, it is possible to make an independent

measurement (e.g. µ taken from a diamagnetic loop) to separate these two moments.

An important effect of high βθ is that it causes a shift towards larger R of the magnetic axis

relative to the centre of the LCFS. This is known as the Shafranov shift and is approximately

proportional to βθ. An equilibrium inference with significantly incorrect βθ will present a

significantly incorrect flux surface topology in the plasma core. If, as if often the case, these

surfaces are used as a coordinate system upon which to infer other quantities by assuming

those quantities are constant on flux surface, they can introduce large systematic errors and

apparent disagreement between different diagnostics.

1.3.5. Other flux functions

In between collisions, the plasma particles are approximately confined to gyrate around field

lines but are free to travel along them. The low density and high temperatures in tokamak

plasmas mean that the particles travel far along field lines before colliding and will explore

most of a flux surface between collisions. Any local input of heat will rapidly spread around

the entire surface and so, on all but very short time-scales, the temperature can be assumed

constant on any flux surface. With the earlier assumption that pressure is also constant, it

follows that density can be assumed to be a flux function.
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1.4. The High Confinement Mode (H-Mode)

1.4.1. Transport and Confinement

While the variation of particle density and temperature has been assumed small within each

surface, equilibrium implies nothing about the variation between neighbouring flux surfaces as

arbitrarily large pressure gradients can be supported by sufficient local current. In reality, a

small flow of energy and particles between surfaces is also present which is known generally

as cross-field transport. The two simplest models for this are collisional transport, which

includes the transfer caused by electron-ion collisions and neoclassical transport, which also

includes the effects of particles reflected by the increasing field strength on the inboard side of

the tokamak and trapped in banana-shaped orbits. Experimentally, much greater cross-field

transport rates are observed which, due to the unknown mechanism, is termed anomalous

transport. Theoretical and experimental studies indicate that it is due to turbulent transport,

where small scale fluctuations/eddies of the equilibrium quantities transfer particles and energy

across the average/equilibrium surfaces.

In almost every case, the transport rates increase with increasing density/temperature gra-

dient and act to reduce the gradient, resulting in smooth equilibrium profiles. The plasma

heating is almost always concentrated on the plasma core which gives temperature profiles

that typically fall smoothly and monotonically towards to edge. Density profiles, however, are

not necessarily simple or monotonic. The different local transport rates through a given plasma

combine to give the plasma’s overall particle and energy confinement which relates directly to

the fusion yield and power production as described in section 1.1.

1.4.2. Confinement Modes

Early in tokamak research, it was discovered that when increasing input heating power past

a critical level, the global energy confinement improved abruptly[20]. Operation above and

below this threshold became known as the Low and High confinement modes (L-Mode and H-

Mode). The higher confinement in H-Mode was found to be mainly due a region of abnormally

low transport close to the plasma edge known as the edge transport barrier (ETB)[21]. Many

experiments have been conducted to obtain empirical expressions for the plasma conditions

required to enter H-Mode and many theories proposed to explain the barrier. At the time of

writing, the most widely accepted proposes the suppression of turbulent transport by a large

shear in the plasma flow in the barrier region. However, the cause and mechanisms are not well

understood and the barrier characteristics (extent, size, gradients etc) cannot be predicted at
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present.

1.4.3. Effects of the Edge Transport Barrier
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Figure 1.3.: Typical electron density and temperature profiles in low confinement mode (blue)
and in high confinement mode (red) before (solid) and after (dashed) an edge
localised mode crash.

Figure 1.3 shows typical tokamak electron density ne and temperature Te profiles in L-Mode

and in H-Mode. The steep gradient of the ETB can be seen clearly in the H-Mode Te profile

and while the gradient remains roughly the same as for the L-Mode in the core, the whole

profile is raised on the pedestal of the edge region. The ne profile shows a much higher and

steeper pedestal in H-Mode but the pedestal feature is often observed in L-mode, possibly due

to the higher charged particle source (due to high neutral density) in the edge region.

The ETB/pedestal region exhibits distinct features in many plasma quantities and to mea-

sure these the diagnostics are often designed to have high spatial resolution at the plasma edge.

Data analysis is also effected as smoothing, regularisation and fitting techniques tend to under-

estimate the pedestal gradient unless great care is taken. The large ne and Te gradients imply

a large pressure gradient which, through the equilibrium, suggests a narrow field-perpendicular

current density in the ETB region that is much larger than in the plasma core. Models for the

parallel current also give a positive dependence on ne and Te gradients and so predict a large

parallel current density. The equilibrium fitting procedure described in section 1.3 usually has

insufficient freedom in the parametrisation to correctly describe the pressure pedestal and edge

current.

Reduced transport in the ETB clearly raises the plasma temperature and density across the

entire plasma volume but it has also been shown experimentally [22, 23] that reduced transport

in one region can also reduce it neighbouring regions, giving the profile an apparent rigidity of

shape known as stiffness and further improving the confinement. For many H-mode plasmas,

a large part of the overall confinement can be due to the presence of the ETB, making it of
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great importance to the final goal of tokamak research.

1.4.4. Edge Localised Modes (ELMs)

Another feature of the H-Mode is the edge localised mode (ELM), a type of instability which

results in a periodic (possibly only partial) collapse of the pedestal as shown dashed in figure

1.3. A large amount of plasma is rapidly expelled into the SOL and can be observed by the

recombination emission as it is neutralised on or near the first wall. After the collapse, the

pedestal gradually rebuilds until the next ELM occurs. This inter-ELM period, which is usually

fairly regular for a given set of the global plasma parameters, is used to distinguish between

two main types of ELM. With increasing heating power, Type-I ELMs increase in frequency

and Type-III ELMs decrease in frequency [24]. Figure 1.4 shows the D-alpha emission intensity

from near the SOL/first-wall contact point for a typical Type-I ELMy H-mode and a typical

Type-III ELMy H-Mode. The Type-I ELMs are larger and lower frequency than Type-III

ELMs which are often called grassy ELMs due to their appearance on the emission signal.

56.0 56.5 57.0 57.5 62.2 62.462.3

D-Alpha
light.

ne ped.

Te ped.

time / s time / s

a) Type-I ELMS b) Type-III / Grassy ELMS 

Figure 1.4.: Evolution of the deuterium-alpha line emission intensity (black) and electron
density (blue) and temperature (red) at the top of the pedestal during a) Type-I
and b) Type-III ELM crashes.

The cause and mechanism for ELMs is not entirely understood. The current leading theory

attributes at least Type-I ELMs to either a current instability called a Peeling mode, a pressure

driven instability called a Ballooning mode or possibly a combination of the two. Testing of

the Peeling/Ballooning model is a highly active area of research as the energy expelled during a

Type-I ELM crash would cause significant damage to the first wall in reactor conditions. It will

be essential to be able to predict when an ELM crash will occur, determine how much energy

will be ejected and possibly suppress or prematurely trigger ELMs. Because the pedestal

is such a spatially localised phenomena and the ELM period so short, even measuring the

pedestal quantities between ELMs is difficult. Despite the importance of the current in the

Peeling/Ballooning model, no reliable measurements have yet been made of the evolution of the

pedestal current within the ELM cycle and in most analyses, the pedestal current is imposed
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based on theoretical predictions.
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1.5. The Joint European Torus (JET)

The Joint European Torus (JET), from which the data this work is based on comes, is a

large Tokamak with a major radius of 2.96m and a minor radius of around 0.9m (horizontal).

It was built in the early 1980s and was designed to investigate plasmas approaching fusion

reactor relevant plasma conditions. At the time of writing, it is the largest Tokamak ever

built and holds the record for the highest fusion power of 16MW, a ratio to input heating

power of Q ≈ 0.7. This was achieved using a 50/50 mix of deuterium and tritium and JET

is currently the only tokamak capable of handling full operation with tritium fuel, although it

usually operates with D-D plasmas to limit activation of the vessel and components. All of the

plasmas analysed in this work are principally Deuterium. Present day investigations at JET

play a major role in the design of ITER (’The Way’ in Latin and originally the ’International

Thermonuclear Experimental Reactor’), a new Tokamak that will provide the next step towards

a working reactor, with the goal of producing a fusion/heating power ratio of Q ∼ 10.

JET has a large available external heating power provided by Joule heating of the main

solenoid current drive ( Ohmic), Neutral Beam Injection (NBI), Ion Cyclotron Resonance

Heating (ICRH) (also known as Radio Frequency (RF) heating) and by Lower Hybrid Current

Driving (LHCD). Early in its operational life, it formed a simple limited plasma and was able

to produce plasmas with volumes of ∼ 200m3. Later, a pumped divertor was built to reduce

impurities and aid establishment of the ETB and H-Mode operation but reduced the plasma

volume to ∼ 90m3. Figure 1.5 shows the poloidal cross-section of JET during these two phases

along with typical flux-surfaces. Table 1.2 gives the main operational ranges and the order of

magnitude of some relevant and important plasma parameters.
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Figure 1.5.: left) Early and right) more recent view of poloidal cross-section of JET, showing
vessel structure and magnetic flux surfaces.

Bφ Vacuum Toroidal Magnetic Field (max at centre) 3.5 T
Ip Plasma Current (max) 5MA
Ptot Total Aux. Heating Power (max) 30MW
β Plasma Pressure / Magnetic Field (max) ∼ 4%
ne Electron Density ∼ 1020 m−3

Te Electron Temperature ∼ 1− 10 keV
Ti Ion Temperature ∼ 1− 50 keV

ca Alfen speed ∼ 107 ms−1

cs Sound speed ∼ 106 ms−1

vφ Toroidal Velocity ∼ 105 ms−1

vθ Poloidal Velocity ∼ 103 ms−1

ρi Ion Lamour Radius ∼ 10−3 m
ρe Electron Lamour Radius ∼ 10−4 m
λd Debye Length ∼ 10−5 m
ωpe Electron Plasma Frequency ∼ 1011 Hz
ωce Electron Cyclotron Frequency ∼ 1011 Hz
νe Electron-Electron Collision Frequency ∼ 105 Hz
νi Ion-Ion Collision Frequency ∼ 104 Hz
νi Electron-Ion Collision Frequency ∼ 104 Hz

Table 1.2.: Capabilities and typical conditions for JET plasmas
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1.6. JET Diagnostics

This sections gives an introduction to several of the plasma diagnostics used at JET. The

modelling of three of these is the principal concern of this work and they are covered in much

greater detail in later sections. The others are used for comparison, isolation of interesting

pulses and time periods or to highlight plasma physics effects. While many of the details here

are specific to the apparatus set up on JET, variations of all these systems can be found on

many other Tokamaks where the physical principles of the measurements remain the same.

Figure 1.6 shows the lines of sight along which, or positions at which each diagnostic makes

its measurement in the poloidal plane of JET.

Figure 1.6.: The lines of sight or observation position(s) for all diagnostics on JET which are
referenced in this work. These are shown projected into the poloidal plane along
with a set of flux surfaces and boundary typical of a JET diverted H-Mode plasma.
The first wall is shown in black.

Each diagnostic has its own independent standard analysis procedure and code that derives

estimates of quantities of interest from the observed data. These are sometimes simple and

general but in many cases, in order to be robust, make strong and sometimes inaccurate

assumptions about the plasma and/or diagnostic behaviour. The standard analysis results are

used for comparison and discussion throughout this document but the models, analysis and
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hence the principal results of this work are based on the raw observed data and so are entirely

independent of these.

1.6.1. Modelled diagnostics

Interferometry

The interferometry system determines the line-integrated electron density ne along 4 vertical

and 4 lateral lines of sight. A far-infrared laser beam is sent along each path and interfered

with a reference beam to measure the optical path difference from which the line integrated

density is inferred. The noise level is very low and the standard analysis results are quoted as

accurate to 1017m−2, typically < 1%. However, at any time, the system gives the offset from

an unknown integer multiple of 1.143 × 1019m−2, called fringes. The current fringe is known

only by following the evolution in time and rapid changes can result in ’fringe jumps’ where

the absolute value is lost and only the offset known. Such cases must be manually corrected,

often by referring to other diagnostics.

Polarimetry

The polarimetry system measures the polarisation change of the interferometry laser beams due

to the plasma and hence much of the hardware is shared by the two systems. Using a simple

approximation, the standard analysis code gives the Faraday rotation ∆ψ ∼
∫
ne(l)B‖(l) dl and

the induced ellipticity due to the Cotton-Mouton effect which follows tanχ ∼
∫
ne(l)Bφ(l) dl

if appropriately set-up. The Faraday rotation can be of great use in the inference of the

magnetic topology since it gives measurements of the field induced by the plasma current,

inside the plasma.

LIDAR/Thomson Scattering

Thomson scattering diagnostics infer the electron temperature Te and density ne from the

intensity and Doppler broadening of Thomson scattered light, originating from a laser pulse sent

into the plasma. For LIDAR systems, 180o back-scattering is collected by a single spectrometer

and the time of flight used to give complete profiles along the laser path. JET has two systems

which both use a ∼ 300ps ruby laser pulse, one passing through the plasma core and one

skimming the plasma edge. The core system fires once every 250ms throughout each shot and

the standard analysis gives a spatial resolution of ∼ 12cm. The edge system fires 6 times per

pulse at 1s intervals and has a spatial resolution only slightly higher along its line of sight but
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when mapped on flux-surfaces to the mid-plane, this is ∼ 2cm using the standard analysis

code. Both systems are quite complex and involve a large number of calibration parameters.

Uncertainty in these and in the mapping causes significant problems in the use of profiles

inferred using the standard analysis codes.

1.6.2. Other Diagnostics

Poloidal Magnetic Field Coils

The JET magnetic diagnostics set measures the poloidal magnetic field and flux outside the

plasma and consists of 230 pickup coils, 88 saddle coils and 6 full toroidal flux loops. They

are used for MHD mode analysis but primarily act as constraints to solve the Grad-Shafranov

equation in order to infer the magnetic topology and plasma current profile. The JET equi-

librium fitting code (EFITJ) runs as a standard analysis code using only the magnetics coils

as constraints and using a heavily constrained current profile parameterisation to provide an

approximate but robust result. More accurate results can be obtained with manual EFITJ

runs, using internal measurements from other diagnostics, and weaker profile constraints[25].

Motional Stark Effect (MSE)

The JET motional stark effect diagnostic measures the Stark splitting of the Dα line emission

from neutral beam particles. The emission is Doppler shifted due to the high beam particle

velocity so can be separated from the background Dα emission. The line is split by the electric

field in the particle’s rest frame, which gives some information on the magnetic field in the lab

frame. This can be used as one of the extra internal constraints for manual EFITJ runs[25].

The diagnostic data is not used directly and the system is only defined here as it is discussed

on a few occasions in this work.

High Resolution Thomson Scattering (HRTS)

The high resolution Thomson scattering [26] is a conventional TS system with a series of

separate spectrometers each viewing the laser propagation path at ≈ 90o. Installation of

the system was completed about half-way through this project so the diagnostic is used only

for comparison with the main results. The resolution (both integration length and channel

spacing) of the system is ≈ 3cm for most of the JET pulses which were available and ≈ 1.5cm

for a small amount of very recent data and the system had a 50Hz temporal sampling rate

throughout.
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Unlike the LIDAR systems, each channel must be calibrated separately and the complexity

was such that all of the HRTS data available during this project was inferred using calibration

coefficients determined by statistical comparison with other diagnostics. Both the absolute

magnitude and profile shape are effectively determined by this.

Electron Cyclotron Emission (ECE)

In conditions usually true in JET plasmas, the intensity of electron-cyclotron emission is de-

pendent on the local electron temperature and the frequency is a harmonic of the local electron

cyclotron frequency, which depends only on the magnetic field. The field is dominated by the

vacuum toroidal field which simply falls as 1/R, giving a simple relationship between position

and frequency.

Two systems on JET measure ECE radiation leaving the plasma [27, 28]. The first is a

Michelson interferometer which has a low temporal resolution (15ms) but is absolutely cal-

ibrated. The second is a heterodyne radiometer [29] which gives high temporal resolution

(∼ µs) and a good spatial resolution (∼ 3cm) but is cross-calibrated against the Michelson

system. The heterodyne radiometer is also only able to infer Te out to part way through the

ETB, because the plasma becomes optically thin and the assumptions used by the standard

analysis code break down. The standard analysis also produces Te profiles which appear to

be shifted by ∼ 3cm relative to the HRTS and LIDAR standard analysis results. Forward

modelling of the ECE system is being carried out elsewhere at the time of writing and once

complete, combination of this with the models and techniques developed here will be simple.

Here, the standard analysis Te results are used only for comparison.

Charge Exchange Recombination Spectroscopy (CXRS)

The Doppler shift and broadening of the emission created during charge exchange between

charged impurity ions and injected neutral beam ions give information about the temperature

and velocity of the impurity ions. Assuming that these are in thermal equilibrium with the

bulk plasma ions, these allow the inference of the plasma ion temperature Ti and rotational

velocity ωi. It is also possible to infer the density of the impurity ions from their spectral lines

and make an estimate of Zeff , the effective charge of the plasma.

JET has two main charge exchange recombination spectroscopy (CXRS) diagnostics, one

covering the plasma core[30] and other concentrating on the plasma edge[31].
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Visible Spectroscopy (D-Alpha)

The JET visible spectroscopy diagnostic is used to measure the Dα emission from deuterium

atoms and to estimate Zeff from Bremsstrahlung emission. The Dα signal relates to the

recycling - the flux of deuterium ions leaving the plasma, neutralising on or near the walls and

re-entering the plasma. This allows clear identification of the start of H-Mode as the formation

of the ETB reduces the recycling and the Dα falls below the L-Mode level. ELMs can also be

seen clearly as a very short peak in the Dα signal, as was shown in section 1.4.4.
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1.7. Motivation - Tokamak Data Analysis

To achieve the conditions for fusion, the plasma must be carefully controlled. This requires ac-

curate knowledge of many aspects of the plasma state and the ability to predict its behaviour.

Such understanding comes either empirically from experimental observations or from theoret-

ical models, which must be checked against observations. The accuracy of the observations

required varies but in every case, the accuracy achieved - the uncertainty - must be known.

1.7.1. Complementary information

The wide range of diagnostics on modern Tokamaks means that a large amount of information

is available but also highlights problems. For example, where multiple diagnostics are used

to infer the same physical quantity, they often conflict or disagree. This might be due to

inaccuracies in calibrations or inconsistencies in the assumptions made about the diagnostic

and/or plasma physics during the analysis of each data set. Handling the issues and complexity

involved is a problem common to many experimental sciences, and is a field of study in its own

right.

Under standard approaches, the primary purpose of each diagnostic is seen as the measure-

ment of a single or a small number of physical parameters but calculating them often requires

other parameters. Physical assumptions can also require other information, such as assuming

quantities are constant on flux surfaces requires the magnetic topology to be known. Seen as

inconvenient dependencies, they are taken from the analysis of another diagnostic which may

have involved many assumptions itself. This leads to a chain of collected uncertainties which in

many cases are too complex to calculate and propagate, so are omitted or crudely estimated.

The lack of calculated uncertainties in flux surfaces from equilibrium fitting codes is a specific

problem which has been particularly common in almost all Tokamak analysis for a long time,

and one which this project attempts to address.

These dependencies can be seen as a benefit instead of an unavoidable complication, as they

imply that the diagnostic holds some information about that parameter which can supplement

that from the other source. However, to consistently combine multiple systems requires a way

to treat the diagnostics simultaneously, with a single set of physical assumptions.

1.7.2. Low information content

In other cases, the information available can be extremely limited. Low signal to noise or large

calibration uncertainty often gives such poor results through the standard analysis that data
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is entirely rejected. With careful handling of the uncertainties, information could be extracted

from such data, especially when large quantities of it are available. JET has been in operation

for 27 years and many of the diagnostics (especially those modelled in this work) have been

recording data regularly for much of this time. In many fields of scientific research, physics

effects are extracted from signals well beneath the noise level, by collecting large quantities of

data but this is rarely done in Tokamak plasma analysis.

To really achieve the best possible use of the vast quantity of data collected by Tokamaks like

JET, requires methods that can handle the high level of complexity that comes from combining

a large number of very different measurement systems. These methods must rigorously keep

track of all types of uncertainty in all measurements, without loss of any useful information

that they may contain. The following chapter introduces both the mathematical concepts and

computational methods that allow this to be achieved.
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2.1. Forward Modelling and Joint Analysis of Diagnostics

Even for individual diagnostics, calculating physical parameters from the observed data - the

’inverse’ problem, is often difficult or impossible because many physical states might create

similar or identical data. However, since the physics and operation of a diagnostic system are

usually well understood, it is normally possible (though not necessarily trivial) to calculate

a prediction of the data that would be produced, given a specified physical state. This is

known as the forward model and representing the diagnostic systems in this way leads to a

conceptually clean and simple way of dealing with most of the problems discussed in section

1.7.

The forward model clearly defines the dependencies of the diagnostic as seen in figure 2.1

which shows a (very simplified) forward model for a 3-channel single-point Thomson Scattering

(TS) diagnostic, requiring the electron density ne and temperature Te as a function of space.

Figure 2.1.: Schematic of a simplified 3-channel single point Thomson Scattering diagnostic
forward model, depending on electron density ne and temperature Te.

The dependencies can be tied to any plasma physics model/parameterisation, which is sep-

arate from the diagnostic model. Adding further diagnostics is simply a case of tying them to

the same physics model. Figure 2.2 shows a simple combination of the TS system, an inter-

ferometer and some magnetic coils, tied to an axisymmetric model of the plasma current and

electron density and temperature, which are assumed constant on flux surfaces.

The natural modularity lends itself to the implementation and this concept underpins the

software framework used for this work - Minerva[32]. Each diagnostic model can be an inde-

pendent computer code module and complete models built by linking together any combination

of these with the desired physics model. The parameters can then be set and each module

produces the predicted data for its diagnostic. Large and very complex systems can be assem-

bled easily because, other than its dependencies, the details of the diagnostic model need not

be known by the modeller. There are in principle no consistency issues with assumption since

the forward models make no assumptions about the plasma physics (besides what is obvious

from their dependencies, e.g. the dependency on Te inherently assumes a Maxwellian velocity

distribution).
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Figure 2.2.: Schematic of a simplified 3-diagnostic system, connected to an axisymmetric
plasma model with parameterised jφ(R,Z) and electron density and temperature
modelled as 1D functions of normalised flux: ne(ψN ), Te(ψN ).

An obvious side-effect is that the forward models can be used for diagnostic simulation but

the real desire is to determine the parameters, given the measured data. In a simplified sense,

this is just a case of searching for every set of the parameters for which the modules predict

data very close to what was recorded. Doing this rigorously and handling the uncertainties,

requires a framework for dealing with problem of inference itself.
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2.2. Bayesian Analysis

2.2.1. The Likelihood Distribution

Ideally, the diagnostic models would provide the exact forward function D = ff
(
µ
)
, which

gives the vector of precise data that would be observed D if the state of the entire system were

exactly that described by the vector of parameters µ. This is never practically possible since

there are always some details of the physical state too subtle or impossible to assign parameters

to, such as electronic noise created from thermal fluctuations or noise arising from quantum

effects which are inherently random. These contributions can instead be assigned a Probability

Density Function (PDF). Instead of ff
(
µ
)
, the diagnostic model produces a PDF of the data

that would be observed P
(
D | µ

)
, known as the likelihood distribution, in repeated experiments

under exactly the same conditions for the parameterised part of the physical state µ.

2.2.2. The Posterior Distribution and Bayes Theorem

The likelihood distribution still describes the forward situation, as it gives the uncertainty in D,

given an exact µ. For a real experiment (the inverse/inference problem), the data D observed

is known exactly and the true physical state µ is uncertain or not known. The PDF desired is

P (µ |D) and is known as the posterior PDF. The posterior describes the probability that the

system was in any given state µ given that the data D was observed and it can be obtained

from the likelihood through the product rule of probability theory:

P (A,B) = P (A|B) P (B) (2.1)

= P (B|A) P (A) (2.2)

The two right hand expressions can be easily rearranged to the required one, known as Bayes

Theorem:

P (A|B) =
P (B|A) P (A)

P (B)
(2.3)

In terms of the plasma state and measured data, this is:

P
(
µ |D

)
=
P
(
D | µ

)
P
(
µ
)

P (D)
(2.4)

Since D is known exactly, P (D) which is known as the evidence and is a function of D alone,

is constant. After dropping this by rewriting the equation as a proportionality, it contains only

the posterior, likelihood and P
(
µ
)

which is known as the prior probability. The prior encodes
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any knowledge, or lack of knowledge, of the plasma state before the measurement took place.

The posterior represents everything that is known about the plasma state from the diagnos-

tic’s observations and the prior assumptions, including all uncertainty. It always exists, and

because it can represent inferred relationships between parameters, it can be calculated even

for diagnostics that would normally be considered entirely dependent on another. Take for

example, a diagnostic that really measures the data D = µ1 + µ2 + δ, where δ is some small

noise source. This might normally be considered a device for measuring µ1 which is dependant

on a separate measurement of µ2. The posterior for the first diagnostic alone, would have a

narrow ridge of high probability in the 2D plane of P (µ1, µ2|D), consistent with the measured

sum.

Bayes Theorem and the techniques of Bayesian analysis have been used previously in nuclear

fusion research [32, 33, 34, 35, 36, 37, 38].

2.2.3. The Joint Posterior Distribution

For models with multiple diagnostics, each forward model gives a separate likelihood function,

based on the same plasma P
(
D1 | µ

)
, P

(
D2 | µ

)
etc. Probability theory provides a way to

handle models with multiple diagnostics and determine what can be inferred about µ given all

the data - the joint posterior P (µ |D1, D2). Starting with Bayes Theorem:

P
(
µ |D1,D2

)
∝ P

(
D1,D2 | µ

)
P
(
µ
)

(2.5)

The physical state common to more than one diagnostic should be held in µ, so that for fixed

µ, variation in the data of each diagnostic - the noise - is independent of all other diagnostics.

This makes the likelihood distributions entirely independent, and the joint posterior is simply:

P
(
µ |D1,D2

)
∝ P

(
D1 | µ

)
P
(
D2 | µ

)
P
(
µ
)

(2.6)

2.2.4. Marginals and Conditionals

If a single parameter, or a subset of the parameters in µ are fixed at some specified value, the

PDF over the remaining parameter(s) is known as the conditional distribution, e.g. P (µ1 |D, µ2, µ3, . . . µN ).

It is usually trivial to calculate and describes what would be known about µ1, if the others

are exactly that specified. In most circumstances, what is desired is what can be inferred

about the subset, independent of all the others e.g. P (µ1 |D). This is known as the marginal

distribution and is significantly more complex to calculate, as it requires integrating over the
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other parameters:

P (µ1 |D) =

∫ ∞
−∞

P
(
µ |D

)
dµ2 dµ3 . . . dµN (2.7)

2.2.5. Bayesian Analysis In Practice

For most problems µ will include a very large number of parameters. For instance both ne and

Te might be parameterised as 1D profiles through an interpolation of 100 nodes each, making

the posterior P (µ |D) a 200-dimensional object and impossible to calculate, store or interpret.

In some special circumstances, it can be entirely described by low order moments, for example

when the posterior is a multivariate Gaussian, the 200 element mean and 200× 200 covariance

matrix is sufficient. However, the posterior is usually represented by a series of samples of µ,

calculated to be as if they were representative samples drawn from the posterior. Also, the µ

with the highest posterior probability density - the Maximum posterior (MAP) can be found

which is effectively the ’best fit’ of traditional methods. It should be noted however, that the

MAP is not necessarily close to the mean posterior and that the value for a single parameter

at the MAP, might not be close to the value of that parameter at the maximum of its marginal

distribution, which is the best estimate for that parameter independently of the others. A

benefit of the storage of the posterior as samples, is that the distribution of a set of parameters

within them, is that parameter’s marginal distribution. There are no further steps required to

calculate the high-dimensionality integral of equation 2.7.

2.2.6. Inversion Algorithms and Minerva

The methods used to find the MAP and generate samples are covered in 2.3 and 2.4, but it is a

particular feature of the analysis that the solution methods are entirely external to the model,

both conceptually and in the implementation. This is unlike many of the standard analysis

codes which perform fits, estimations and other inversion methods internally at multiple stages

in the analysis chain.

All of the work described in this thesis was carried out within Minerva[32], a software frame-

work for handling high complexity forward modelled Bayesian inference problems, described in

terms of a Bayesian Graphical Models[4]. As well as the diagnostic models, work by the author

for this thesis included development of common physics modules, inversion algorithms and a

general parallelisation suite, as well as some minor work on the framework itself. All of these

are completely reusable modules, available to anyone working with Minerva and some of this
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is already in use by other parties both at JET and on other Tokamaks such as the Mega-Amp

Spherical Tokamak (MAST) [39, 40].

2.2.7. Bayesian Theory and Terminology in this thesis

The Bayesian theory set out above provides a rigorous basis for the analysis carried out in

this work. However, since the primary objective of the thesis is the analysis of Tokamak

plasmas, it is used as tool. In some cases, more traditional methods (like least-squares fits)

are simpler to perform and describe and can be proven to follow from Bayesian theory under

certain assumptions. In other cases, traditional language is used simply as it is shorter and

will be more familiar to most readers. As such, the principles, precise mathematical formalism

and especially the terminology of Bayesian theory are not followed exactly in every part. More

detailed and careful introductions to Bayesian analysis methods are available elsewhere[41].
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2.3. The Linear Gaussian Inversion

The linear Gaussian inversion (LGI) is an extremely useful numerical tool used in a specific

situation to calculate the posterior distribution in a single relatively simple operation (from [38]

and [42] before that). Although occurrences of the exact conditions are rare, many problems

can be well approximated in a compatible way.

The method is applicable when the likelihood of the data vector D can be expressed as a

multivariate Gaussian with some known covariance σD, and that the mean D0 is a known

linear combination of the unknown parameters D0 = M µ + C. The response matrix M and

the constants C make up the linear forward function in this case. The final requirement is that

the prior must also be expressed as multivariate Gaussian with mean µp and covariance σp:

P
(
D | µ

)
= G

(
D; M µ+ C, σD

)
(2.8)

P
(
µ
)

= G
(
µ; µp, σp

)
(2.9)

Through Bayes theorem, the posterior, with an arbitrary normalisation constant A1 is:

P
(
µ |D

)
∝ P

(
D | µ

)
P
(
µ
)

∝ G
(

D; M µ+ C, σD

)
G
(
µ; µp, σp

)
logP

(
µ |D

)
= − 1

2

(
D−M µ− C

)T
σD
−1
(
D−M µ− C

)
(2.10)

− 1
2

(
µ− µp

)T
σp
−1
(
µ− µp

)
+A1

Since the posterior is a multiplication of the two Gaussians, it can be written as a single

Gaussian with mean µ0 and covariance σ:

P
(
µ |D

)
∝ G

(
µ; µ0, σ

)
logP

(
µ |D

)
= − 1

2

(
µ− µ0

)T
σ−1

(
µ− µ0

)
+A2 (2.11)
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Expanding equations 2.10 and 2.11 and equating like terms in µ:

µTσ−1µ = µT
[
MTσD

−1M + σp
−1
]
µ (2.12)

µ0
Tσ−1µ =

[
(D− C)

T
σD
−1M + µp

Tσp
−1
]
µ (2.13)

µTσ−1µ0 = µT
[
MTσD

−1 (D− C) + σp
−1µp

]
(2.14)

µ0
Tσ−1µ0 +A2 = (D− C)

T
σD
−1 (D− C)− 1

2µp
Tσp

−1µp +A1 (2.15)

From equations 2.13 and 2.14, the posterior covariance and mean are:

σ =
[
MTσD

−1M + σp
−1
]−1

(2.16)

µ0 = σ
[
MTσD

−1 (D− C) + σp
−1µp

]
(2.17)

The power of the method can be seen in these last two equations - that the full mean and

covariance of the posterior distribution can be calculated in a single matrix inversion given the

inverse covariances of the prior and likelihood distributions and the response matrix.

In general (where the LGI conditions are not met), the posterior maximum is found by

iterative numerical algorithms and the shape and extent investigated by the drawing random

samples, a procedure which usually involves a gradual random walk. Both of these processes

can take many thousands of times the parameter dimensionality of forward function evaluations

to complete and for very high dimensionality (N(µ) >∼ 200) becomes prohibitively expensive.

For the LGI, the maximum posterior µ0 is immediately available and the drawing of random

samples from a multivariate Gaussian is a well known, relatively trivial procedure. Every

marginal distribution is also Gaussian, with mean and covariance found simply by dropping

the rows and columns of µ0 and σ that relate to the parameters to be marginalised out.

2.3.1. Practical Application and Parallel Implementation

Often, the forward function is easily written as a linear combination of the parameters and the

coefficients are used to directly construct M and C. For more complex cases, they are found

by first calculating the data Di for some initial set of parameters µi about which the forward

function is assumed linear. Each parameter in turn is then modified and the relevant parts of

M and C filled using the difference between the new predicted data and Di. The calculation

requires only the one evaluation of the forward function for each parameter and the initial one,

so is relatively low cost. This proceedure can be performed automatically on any model within

Minerva.
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However, in some cases this work requires repeated application of the LGI to very large prob-

lems (N(µ) ∼ N(D) > 4000) with relatively slow forward functions (t ∼ 100ms). To reduce

the inversion time, a general parallel implementation of the LGI was developed for Minerva.

The determination of M is ideally suited to this since each machine can independently calculate

a selection of the rows. Once complete, M is distributed over the involved machines so that

after distribution of σD
−1, σp

−1 and µp, equations 2.16 and 2.17 are performed using freely

available parallel matrix libraries (PBLAS, BLACS, scaLAPACK [43], [44]). The developed

software allows the calculation of such large problems in a few minutes, where the serial imple-

mentation can take hours. It also allows the calculation of the posterior even when the model

has too many parameters for the matricies to be held in the memory of a single computer,

since the storage is distributed across the participating machines.

2.3.2. Truncated Gaussians

In many cases where the priors are not Gaussian, they can be easily represented as truncated

Gaussians. Typical examples are densities and temperatures where parameters are restricted

to being positive P (ne) = 0 for ne < 0. In such cases, the LGI procedure is applied as if

the truncations were not present and the truncation simply applied directly to the posterior

(There should also be a modification to the normalisation, but the correct normalisation of the

posterior is rarely of any practical use).

If the Gaussian centre lies inside the truncation limits so P (µ0) 6= 0 then it is the posterior

maximum, otherwise the maximum will lie somewhere on one of the truncation hyper-planes

and must be found by one of the general iterative algorithms.

The best known way of drawing random samples from the truncated posterior is a Monte-

Carlo process, so is much slower than in the standard LGI, but it is much less costly than

the general Monte-Carlo methods. The procedure is based on the Gibbs-sampler[45], where

a random sample is drawn from the conditional distribution over one parameter given the

current position in all others P (µi | µj 6=i). The sampler moves to the position in µi of the

sample and the procedure is repeated for each parameter in turn. The whole process repeated

many times so that position, moving in steps along each axis, gradually explores the entire

joint distribution.

The procedure is favourable for the truncated multivariate Gaussian because the conditional

distributions are always truncated univariate Gaussians whose mean and variance are easily

calculated from µ0 and σ and methods exist to efficiently draw samples from these[46], so the

overall procedure is fairly efficient. While this has been done previously[47], the posteriors in
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this work are often very highly correlated making the parameter-by-parameter Gibbs sampling

relatively slow to move along the correlations. To mitigate this, a new Gibbs-sampler was

developed where each step is taken along the next eigenvector of σ. The variance of the

conditional along this line (still univariate Gaussian) is given by the associated eigenvalue. The

distance along the line where it intersects the truncation hyper-plane on each real parameter is

found and the most constrictive of these give the limits on that conditional. For the situations

where it is used in this work, the procedure is significantly more efficient than that in [47].

The principle behind both the existing (parameter-space aligned) and the eigenvector aligned

methods are shown in figure 2.3.

Figure 2.3.: The principle of the Gibbs-sampler applied to a 2D truncated Gaussian using
a) parameter-space aligned conditionals/steps as in [47] and b) using eigenvector
aligned conditionals as in this work. The green arrowed lines show some arbitrary
example jumps and the 1D graphs show the conditional PDFs for one them in each
case. µ are the parameters and E the eigenvectors of the Gaussian covariance.
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2.4. Non-Linear Algorithms

Where the (T)LGI is not applicable, a number of different algorithms are available. These

are split into those that find the position of the MAP (MAximum posterior) or a point close

to it and those that explore the posterior distribution, producing a series of positions which

are effectively samples of the posterior. The details are included here because they are an

important part of the practical Bayesian methods, were used for most of results reported and

because a large part of the project time was spent investigating, implementing, optimising and

further developing them. However, the details should not effect the MAP or samples obtained

in any way, so the casual reader may skip this section if willing to accept that the algorithms

perform correctly.

2.4.1. Gradient and Line Search Algorithms

These are useful for cases where the posterior has a fairly low dimensionality, is smooth and

has only a single maximum. They each involve first choosing a direction in parameter space

and then finding the optimum position along that direction.

The line search can be done with robust methods like a bisection or preferably Golden Section

search from the edges of parameter space or in some cases Newton Raphson iterations can be

used. For posteriors with low correlation between parameters, taking the directions along each

parameter in turn can be sufficient but the method more usually used is to choose the direction

of steepest gradient at each stage. A more optimised version of this is the ’Conjugate Gradient’

method [48].

Unfortunately, the best of these methods require the posterior gradients. If the posterior

calculation is itself complex, as is usally the case, the gradients must be calculated numeri-

cally and correctly choosing the ’small’ step size involved is, in general, difficult. Almost all

interesting cases in this work were found to be far too complex, especially since the truncation

of many parameters (e.g P (ne) = 0 for ne < 0) give infinite gradients which cannot be easily

handled.

2.4.2. Pattern Search

Several algorithms, such as the ’Downhill simplex search’ and ’Hooke and Jeeves’ were tried,

which perform pattern based searches through the whole parameter space, converging on the

maximum. The advantage over the first class is that they do not require external gradient

calculations so require less tuning. The Hook and Jeeves algorithm was found to be of use in
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many of the lower complexity cases in this work although the convergence time is usually long.

Like the gradient algorithms, these require the space to be uni-modal or for the start position

to be nearest to the global maxima.

2.4.3. The Genetic Algorithm

In most of the cases in this work, the MAP is found using a Genetic Algorithm (GA). The GA

can search extremely complex, very high dimensional posteriors with multiple maxima. It is a

computational implementation of natural selection.

Basic Algorithm

The GA holds a collection of positions in parameter space, known as its population and gen-

erates new child solutions, either by mutation where an existing population member is taken

and its parameters modified slightly or by cross-over where parameters are taken from two

existing population members. The fitness (logP here) for the child is calculated and compared

to an existing population member. The child can be either rejected or accepted (replacing that

existing member) based on a random decision biased by the comparison. This process allows

the GA to simultaneously search multiple ’good areas’ of the posterior and slowly approach

the optimum of each. When the process is deemed complete, the population member with the

highest fitness is selected as the MAP solution.

The algorithm has a considerable degree of flexibility and hence can be heavily tuned to

each problem by varying such things as the population size, the relative number of cross-overs

and mutations, the exact details of the cross-overs and mutations or the behaviour and biasing

involved in accepting or rejecting a new child.

Development and Parallelisation

Special thanks and recognition are extended to Dr. Alex Meakins who, with some assistance

from the author, developed the GA for this project which includes special features such as

an adaptive mutation system, which gradually adjusts the mutations attempted based on the

acceptance rates of the previous mutations, greatly improving the convergence speed of the

system and making many of the highest complexity problems later in this document possible

within a reasonable time.

The GA was also parallelised by the author under a scheme where multiple GAs run on

different computational units, each evaluating the posterior and progressing independently

until a random selection of the population is exchanged with another GA in the cluster.
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2.4.4. The Gibbs Sampler

The Gibbs sampler is used to explore the posterior (draw samples) in circumstances where

samples can be easily drawn from the conditional distribution over a subset of parameters

(possibly a single one) by another means. It is only used in this work as part of the TLGI

procedure covered in the previous section (2.3.2).

2.4.5. The Metropolis Hastings Markov Chain Monte Carlo Sampler

Once the maximum is found, the Markov Chain Monte Carlo (MCMC) processes allow repre-

sentative samples to be drawn the PDF. The algorithm used here is based on the Metropolis

Hastings [49] algorithm.

The algorithm performs a random walk around the ’target’ distribution (the posterior in

this case). The individual jumps taken are sampled from from a proposal or trial distribution

and then a decision of whether to proceed with the jump is made based on the ratio of the

target probability at the existing and new positions. If the new position evaluates to a higher

probability, the jump is made. If the new probability is lower, the decision to jump is taken

randomly, biased by the probability ratio. If the jump is rejected, another sample is taken at

the existing position before a new trial jump is drawn. The resulting series of positions is the

Markov Chain and, given a long enough chain, can be shown to provide representative samples

of the target distribution.

Burn-in, chain length and sampling efficiency

If the algorithm begins from a position too far from the MAP, the MCMC will eventually con-

verge towards it (at least for a uni-modal distribution) but this may take a significant amount

of time compared to the GA. If the MCMC begins exactly at the MAP, it will spend some

time gradually moving away. This counter-intuitive effect is correct, since if true representative

samples were drawn from the distribution, the total probability of a sample being drawn from

the small region of high probability density around the MAP is extremely low, compared to

the total probability of it being drawn from somewhere in the large (hyper)volume of low prob-

ability density further away. In either case, the chain must be allowed to complete this initial

burn-in phase and reach a steady state before the samples can be used. Since the positions

returned are separated only by small jumps, successive positions will be heavily correlated.

To remove this artificial correlation, samples must be taken from a chain long enough to have

explored the PDF sufficiently. If the proposal distribution is too small, this will take a very
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large number of jumps and hence a long time. If the proposal distribution is too large, too

many attempted jumps will be rejected and the time before achieving a representative chain

will also be too long. The optimum efficiency is obtained using a proposal distribution of the

same shape as the target, scaled smaller by a fraction dictated by the dimensionality[50].

Adaptive Proposal

In low dimensionally or low correlation cases, using a small uncorrelated Gaussian for the

proposal distribution is often sufficient. For the high correlation, low dimensionality cases many

methods are available which gradually adapt the proposal distribution based on the samples

obtained. A simple method is to use an uncorrelated Gaussian initially and after a short

time after the burn-in has completed, calculating the sample covariance of the prematurely

terminated chain. The chain is then resumed, using a Gaussian with the calculated covariance,

rescaled according to the dimensionality. This was tested on a few known heavily correlated

distributions and was able to successfully draw representative samples from them, up to a few

hundred dimensions. It was used for many of the medium and high complexity cases in this

work. For an in depth review and discussion of more rigorous adaptive MCMC algorithms, see

[51].

LGI bootstrapped Metropolis Hastings

For very high dimensionality (N > 500), the number of samples required to obtain the covari-

ance becomes prohibitively large and use of the MCMC becomes extremely difficult. However,

in many of cases covered here, a large part of the parameters, data and model satisfy the

conditions of the (T)LGI. While the approximation is not valid enough to use the LGI poste-

rior itself, the covariance makes a sufficiently good proposal distribution, after the appropriate

rescaling.

Parallelisation

If multiple independent MCMC chains are run in parallel, the burn-in time remains the same

but once complete, each chain will begin exploring in a random direction. Samples taken from

all chains will be representative long before those taken from an individual chain. Also, it is

easier to determine if the chains have explored far enough, since the chains should cross each

other in parameter space often.
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2.5. Current Tomography

The first stage of the wider Bayesian analysis project at JET was developed prior to this work.

It includes a full model of the JET poloidal magnetic diagnostics - flux loops, saddle and pick-

up coils and their use to infer the PDF of possible toroidal plasma currents. The method,

known as Current Tomography [38] (CT) is outlined here as it is the basis on which much of

this work is built.

The toroidal current jφ is modelled with uniform axisymmetric ’beams’ of rectangular cross-

section as shown in figure 2.4a. As well as the set inside the vessel used to parametrise the

plasma current, a set is included to model the effect of the PF coils (for which the currents

are known) and a further set to represent the unknown poloidal field contribution from the

ferromagnetic iron core.

PF Coil
Currents

Plasma
Current
Beams

Iron Core Currents
Saddle
CoilsFlux 

Loops

Pickup
Coils

Calculated
Magnetic
Field/Flux

First Wall

a) b)

R

Z

Figure 2.4.: JET Current Tomography: Poloidal cross-sections showing a) axisymmetric beams
used to parametrise plasma, PF and iron core toroidal current and b) the poloidal
magnetic flux and magnetic diagnostics in the forward model.

The physics forward model calculates Bθ and ψ and the diagnostic model calculates the

predicted signal for the diagnostics coils shown in figure 2.4b. These are all linear functions

of the current parameters so the LGI can be used to produce the full Gaussian posterior

distribution of possible current configurations from the magnetics data Dm. Using only the

magnetic diagnostics outside the plasma, the detail of the current distribution is very uncertain

and the posterior is very wide (has large eigenvalues) in directions associated with short scale

length variations. It is possible to add a 2D smoothing prior known as the Conditional Auto-

Regressive (CAR) prior, representing a belief that neighbouring current beams should not vary

significantly. With a weak CAR prior, the range of possible current distributions remains large

but quantities calculated from them, such as the total toroidal current, magnetic axis position,

strike points, flux surfaces etc. can be very well determined.
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It should be noted that the method seeks to obtain the possible axisymmetric current dis-

tributions consistent with the measurements, with very weak assumptions about the form of

the current distribution. It does not assume or involve equilibrium in any way and does not

parametrise or involve the poloidal component of the plasma or coil currents.

2.5.1. Adding diagnostics and flux surface dependencies

In the original CT paper, the work was independent of an equilibrium assumption, and it was

envisioned that the uncertainty should be reduced by adding diagnostic models and data, such

as the MSE covered in the paper itself. In chapters 4 and 5 in this work, the JET Interferometry,

Polarimetry and LIDAR Thomson Scattering diagnostic models are developmed, and added

to the Current tomography model. These all either depend on jφ directly, or do so via their

dependence on ne and Te and the assumption that these are constant on each flux surface.

When tied to the CT model, the CT flux surface uncertainty is effectively included in the

analysis of those diagnostics and in some cases, the diagnostics provide some constraint on

jφ. Alternatively, the modelling and analysis of these diagnostics can be based on the fixed

standard EFITJ solution or the fixed CT MAP result. In chapter 6, the flow-free equilibrium

constraint is added directly to the CT system but without many of the other assumptions that

are made in standard equilibrium solvers.
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3.1. Electromagnetic Waves in Cold Plasma

This section gives a simplified derivation of the plasma wave propagation theory relevant to

the diagnostic systems and models discussed in the remainder of the chapter. More rigorous

derivations and more detailed discussions, applicable in much more general circumstances can

be found elsewhere[52].

The diagnostic techniques modelled in this chapter involve the propagation through the

plasma of an electromagnetic wave from a far-infrared laser. Such waves are relatively high

frequency, low amplitude waves and for all JET plasmas, the laser frequency ω is far greater

than both the electron plasma and electron cyclotron frequencies ωp and ωc and the wavelength

far shorter than the scale of any large density variations. The low amplitude means that the

wave can be modelled as a simple linear plane wave. The short wavelength allows the spatially

varying plasma to be treated as independent small consecutive regions of homogeneous plasma,

through which the evolution of the wave is modelled along a straight path, starting from the

state it left the previous region (often referred to as the WKB approximation). The frequency

is sufficiently high that the inertia of the plasma ions is too great for them to be effected

significantly by the plasma wave and so their motion is neglected in this treatment. The

currents induced by the wave’s E field is considered to be only movement in electrons.

A simple plane wave disturbance for this situation, travelling with wave vector k and fre-

quency ω can be expressed as a small oscillating electric field of magnitude E0 and the accom-

panying movement of the plasma electrons, of magnitude v0. These are given by the real part

of:

E = E0e
i(k·r−ωt) (3.1)

v = v0e
i(k·r−ωt) (3.2)

More complex waves can be modelled simply as a linear sum of these.

The evolution of the electric and magnetic fields is described by the two Maxwell’s equations:

∇× E = −∂B

∂t
(3.3)

∇× B = µ0 j +
1

c2
∂E

∂t
(3.4)

(3.5)

To begin with, the wave is considered to be travelling in a vacuum and the plasma is included
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as the free current j, rather than considering it as a possibly dielectric/diamagnetic medium.

Taking the curl of the first and combining these gives the wave equation:

∇×∇× E = −µ0

∂j

∂t
− 1

c2
d2E

dt2
(3.6)

The current is simply the movement of the electrons j = −nqv where n and q are the electron

density and charge. Substituting the plane wave solutions and taking derivatives:

k× k× E = iωnqµ0v − ω2

c2
E (3.7)

The next stage is to calculate the response of the plasma electrons to the wave by finding

v in terms of E. For a general case this is very complex but a simple derivation can be made

using the electron fluid momentum equation, with the pressure and collisional terms ignored.

This results in what is known as the cold plasma approximation:

mn

[
dv

dt
+ (v · ∇) v

]
= −nq (E + v × B) (3.8)

where m is the electron mass.

Substituting the plane waves solutions and dropping all terms above first order in disturbed

quantities, as the disturbances are considered small, gives:

v = − iq

mω
(E + v × B) (3.9)

(3.10)

The dot and cross product of this with B are:

v · B = − iq

mω
E · B (3.11)

v × B = − iq

mω

(
E× B −B2v + (B · v) B

)
(3.12)

These can be substituted back into 3.9 and after splitting the magnetic field B = Bb̂ and

defining the electron cyclotron frequency ωc = qB/m gives the electron velocity response to

the wave E field:

v =
−iq

mω
(

1− ω2
c

ω2

) [E +
iωc
ω

E× b̂− ω2
c

ω2

(
E · b̂

)
b̂

]
(3.13)
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With this and the definition of electron plasma frequency ω2
p = nq2/(ε0m), the wave equation

(3.7) becomes:

c2

ω2
k× k× E =

ω2
p

(ω2 − ω2
c )

[
E +

iωc
ω

E× b̂− ω2
c

ω2

(
E · b̂

)
b̂

]
− E (3.14)

This is simplest if expressed in a coordinate system with the z direction aligned to the static

magnetic field b̂ = ẑ and in terms of the refractive index N = |k|c
ω and unit vector of the

propagation direction n̂ = k/|k|:

−N2 (n̂× n̂× E) =
−ω2

p

(ω2 − ω2
c )

[
E +

iωc
ω

(
Eyx̂− Exŷ

)
− ω2

c

ω2
Ez ẑ

]
+ E (3.15)

=

1− X

1− Y 2


1 −iY 0

iY 1 0

0 0 1− Y 2




Ex

Ey

Ez

 (3.16)

= ε′ · E (3.17)

The electron plasma and cyclotron frequencies have been normalised to the wave frequency by

X = ω2
p/ω

2 and Y = ωc/ω.

The matrix ε′ is known as the dielectric tensor. The version derived here and shown in

equation 3.16 is known as the cold plasma dielectric tensor and is valid only for low temperature

plasmas due to the assumptions made in the use of the electron fluid momentum equation 3.8.

The solutions of equation 3.16 give the characteristic wave modes that can propagate in the

given plasma. To assess the polarisation of these modes, it is more useful to work in a frame

of reference with the z axis aligned to the propagation direction k̂ = ẑ and magnetic field in

the (x, z) plane B = B (sin θ, 0, cos θ). This is done by an appropriate rotation of the dielectric

tensor ε′ → ε:

ε = 1− X

1− Y 2


1− Y 2 sin2 θ −iY cos θ −Y 2 cos θ sin θ

iY cos θ 1 −iY sin θ

−Y 2cosθsinθ iY sin θ 1− Y 2 cos2 θ

 (3.18)

In this frame, equation 3.17 becomes:
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(ẑ× ẑ× E)N2 − ε · E = 0 (3.19)[
N21−N2ẑ ẑ− ε

]
· E = 0 (3.20)

Solutions exist where the determinant of the tensor is 0:

0 = |N21−N2ẑ ẑ− ε| (3.21)

0 = N4 − (ηxx + ηyy)N2 + ηxxηyy − ηxyηyx (3.22)

N2 = 1
2 (ηxx + ηyy)± 1

2

√
(ηxx − ηyy)

2
+ 4ηxyηyx (3.23)

where ηij = εij − εizεzi/εzz (3.24)

Inserting the cold plasma dielectric tensor from equation 3.16 gives the refractive indices of the

two characteristic modes:

N2 = 1− 2X (1−X)

2 (1−X)− Y 2 sin2 θ ±
√
Y 4 sin4 θ + 4Y 2 (1−X)

2
cos2 θ

(3.25)
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3.2. Polarisation

3.2.1. Polarisation Description

The evolution of the components Ex and Ey of the electric field of a plane wave travelling in

the ẑ direction is known as its polarisation. Several different representation can be used:

(Θ, Φ) - Amplitude ratio and phase difference.

As shown in figure 3.1a, the wave is considered as the sum of three waves with their E

fields in each coordinate direction and the polarisation described by the amplitude ratio

tan Θ = |Ey|/|Ex| and phase difference Φ between the x and y components:

E = E0 cos Θ ei(kz−ωt) x̂ (3.26)

+E0 sin Θ ei(kz−ωt+Φ) ŷ

+Ez (z, t) ẑ

(3.27)

(ψ, χ) - Principal angle and ellipticity angle.

In general, the evolution of the vector (Ex, Ey) follows an elliptical trajectory as shown in

figure 3.1b. The polarisation is described by the ellipticity angle χ and the angle between

the major axis of the ellipse and the x-axis ψ.

Figure 3.1.: Definition of wave polarisation in terms of a) Maximum amplitude ratio Θ =
tan−1 |Ey|/|Ex| and phase difference Φ between Ex and Ey, and b) ellipticity
angle χ and principal polarisation angle Ψ.
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3.2. POLARISATION

s - Stokes vector.

The Stokes vector s can describe the polarisation with a 4 component vector in order to

hold the polarisation state, radiation intensity and degree of polarisation. Here, waves

are always considered fully polarised and total intensity is not desired so a 3 component

vector with unit length is used. In terms of the electric field and the (ψ, χ) representation,

this is:

s =


|Ex|2 − |Ey|2

2<
(
ExE

∗
y

)
2=
(
ExE

∗
y

)
 =


cos 2χ cos 2ψ

cos 2χ sin 2ψ

sin 2χ

 (3.28)

Figure 3.2 shows a Stokes vector s and its relation to the angle and ellipticity on a unit

sphere which is known as the Poincare sphere. Every point on the sphere represents a

different polarisation and orthogonal polarisations exist at exactly opposite points.

Figure 3.2.: The Stokes representation showing the polarisation s of an arbitrary wave on the
Poincare sphere with polarisation angle ψ and ellipticity angle χ. Also shown is
the polarisation evolution vector Ω for an arbitrary plasma (aligned with one of
the two characteristic wave modes) and the evolution of the wave s as it passes
through that plasma.

The following relations allow the conversion of polarisation between the first two represen-

tations, and will be useful later:

tan 2ψ = tan 2Θ cos Φ cos 2Θ = cos 2χ cos 2ψ

sin 2χ = sin 2Θ sin Φ tan Φ = tan2χ / sin 2ψ
(3.29)
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3.2.2. Polarisation Evolution

The Stokes representation is particularly useful since it is known [53] that the polarisation s of

a wave in a homogeneous medium evolves according to:

ds

dz
= Ω× s (3.30)

where the evolution vector Ω lies parallel to the Stokes vector of the fast characteristic wave

s1 in the medium with magnitude proportional to the difference between the two refractive

indices:

Ω = −ω
c

(N2 −N1) s1 (3.31)

The Stokes vector for the propagating plane wave s follows a rotation around Ω as it passes

through the medium. Figure 3.2 shows the trajectory for an arbitrary homogeneous medium.

For weakly inhomogeneous media, Ω becomes Ω(z) and equation 3.30 must be numerically

integrated across slabs of thickness dz, giving s at the edge of each slab. To determine Ω for a

plasma, the Stokes vectors for the characteristic modes s1 and s2 must be found. To do this, it

is useful to define the complex polarisation ratio p from the plane wave definition in equation

3.26, which can be expressed in the (Θ,Φ) description by:

p =
Ey
Ex

= tan ΘeiΦ (3.32)

To determine p for each of the wave modes Ez must be eliminated from the wave equation

3.20, to give:

 N2 − ηxx −ηxy

−ηyx N2 − ηyy


 Ey

Ex

 = 0 (3.33)

Inserting the refractive indices of the two solutions (from equation 3.23), the polarisation

ratio p is:

p =
Ey
Ex

= ig ± i
√
g2 + 1 (3.34)

where g =
i (ηxx − ηyy)

2ηxy
(3.35)

From the cold plasma dielectric tensor (equation 3.16), the components ηxy and ηyx are
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imaginary and ηxx and ηyy are real. The implication is that g is real, p imaginary and that the

phase difference between the x and y components is always π/2 for both of the characteristic

modes:

Φ = π
2 , tan Θ = g ±

√
g2 + 1 (3.36)

Inserting the expression for E (equation 3.26) with this Θ and Φ into the Stokes vector

definition (equation 3.28) gives the Stokes vector for each mode:

s1,2 = ± 1√
g2 + 1


g

0

1

 (3.37)

Substituting this and the definition of g (equation 3.35) into the definition of Ω (equation

3.31) gives the evolution vector in terms of the dielectric tensor ε:

Ω =
ω

2c


ηxx − ηyy

0

−2iηxy

 recalling that ηij = εij −
εzjεzj
εzz

(3.38)

Finally, inserting the cold plasma dielectric tensor gives Ω in terms of the basic parameters

ne, B and ω. However, the reference frame used so far has been with x̂ ‖ B and since B may

arbitrarily change direction along the propagation path it is more useful to use a reference

frame with x and y axes fixed relative to the lab frame. This might be based on the initial

polarisation or on the equipment used to detect the final state. In such a frame, the magnetic

field lies at an arbitrary angle B = B0 (sin θ cosα, sin θ sinα, cos θ) and the final evolution

vector is:

Ωc =
ω2
pωc

2cω3 (1− ω2
c/ω

2)


ωc sin2 θ cos 2α

ωc sin2 θ sin 2α

2ω cos θ

 (3.39)

3.2.3. Faraday Rotation and the Cotton-Mouton Effect

While the forward model is based on the integration of equation 3.30 and so is valid for any

initial polarisation and any magnetic field with slow variation, it is useful to be aware of two

specific cases:

B ‖ ẑ - Faraday Rotation

With parallel magnetic field, θ = 0 and Ω reduces to its third component. In this case the
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Stokes vector of the propagating wave rotates around the ŝ3 axis as it progresses through

the plasma. In terms of the polarisation ellipse (ψ, χ) this corresponds to a rotation of

the initial polarisation state with constant ellipticity and is known as Faraday Rotation.

The total rotation ∆ψ after passing through a plasma can be expressed approximately

as a integral of the magnetic field magnitude and electron density along the path [53]:

∆ψ ≈ 1
2C3

∫
ne(z)Bz(z) dz (3.40)

where C3 =
q3

ω2ε0m2c
(3.41)

B ⊥ ẑ and ψ0 = 45o - The Cotton-Mouton Effect

With a perpendicular magnetic field, θ = π/2 and only the first two components of Ω may

both be non-zero. The exact evolution depends heavily on the initial polarisation state

but in the specific case where it is linearly polarised at 45o to B, the wave simply gains

ellipticity. This is known as the Cotton-Mouton effect and the final induced ellipticity

angle χ is given by [53]:

χ ≈ 1
2C1

∫
ne(z)B

2
⊥(z) dz (3.42)

where C1 =
q4

2ω3ε0m3c
(3.43)

In various cases, especially where either effect is weak or the polarisation change is small, it

is possible to find the final polarisation approximately using equations 3.40 and 3.42 simulta-

neously, effectively treating the two effects as independent. Obviously, using this approach too

far outside the assumptions used to derive the equations leads to inaccuracies in the final polar-

isation obtained. Unfortunately, this systematic inaccuracy is often viewed as an ’interference’

or ’interaction’ of the Faraday and Cotton-Mouton effects which should be removed by adding

’corrections’ to the two equations. Such an approach leads to a confusing mix of models and

terminology for situations where the concepts of Faraday rotation and Cotton-Mouton effect

are not really relevant. Considerable effort has been spent evaluating which of these are more

accurate and under what conditions they are valid [53][54][55][56][57] so that they may be used

to convert measured polarisation directly into line integrals of the quantities of interest: ne

and B. The conceptual simplicity of the forward modelling approach is clear in this case, since

it requires only equations 3.39 and 3.30 to recover all information possible about the physical

quantities without loss of accuracy or generality.
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3.3. The JET Interferometer/Polarimeter

The JET interferometer/polarimeter was originally developed as a Heterodyne Mach-Zander

type interferometer used to obtain line integrated density along a number of lines of sight

through the plasma[58]. The system has since been upgraded several times and now also

provides polarisation measurements used to infer information about the magnetic field in the

plasma[59].

Figure 3.3 shows a schematic of the system in its current form.

Figure 3.3.: Schematic of the JET combined Interferometry and Polarimetry system.

The system uses one of two 195µm Deuterium-Cyanide (DCN) lasers and a 119µm Alcohol

laser. The DCN laser is the principal laser of the system and its beam is first split into two

components, one designated for the system of vertical chords and the other for the lateral

chords. For each system, the beam is split again and one component presented to a diffraction

grating on the surface of a rotating wheel. The speed of the wheel is such that the motion

causes a Doppler shift of the diffracted component by 100kHz. Both the shifted and pure beams

pass through a series of mirrors to the Tokamak where the pure component is split into five, of

which four then pass through the plasma. All four plasma probing beams and the fifth reference

beam are then recombined with the 100kHz shifted beam. The interference of these gives a

beat signal signal of approximately 100kHz. The five mixed beams return to the Diagnostics

hall where they are split by a polarisation filter (a wire grid) into two orthogonal components
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which are each presented to an Indium Antimonide detector. The detectors measure a voltage

proportional to the intensity of the ∼GHz wave, at sufficient temporal resolution to observe the

∼ 100kHz beat signal. For each pair of detectors, one remains from the original interferometer-

only system and its signal is denoted i(t) while the other was added for the polarimetry and

is denoted p(t). The four probing beams for the vertical measurements are denoted channels

1-4 and the reference beam Ref-V while four lateral plasma channels are 5-8 and the reference

Ref-L.

The polarising wire-grid in front of the detectors is mounted at approximately 45o to the

beam line and reflects into the ’p’ detectors the orthogonal component to the ’i’ detectors. The

coordinate system is defined so that ’i’ detectors see the x component and the ’p’ detectors see

the y component.

3.3.1. The Heterodyne Interferometer

The wave arriving at the detectors is the sum of the shifted wave and either the plasma or

reference waves. The electric field (x-component implied for the interferometer) of the frequency

shifted (s), plasma (p) and reference (r) waves at a fixed z can be written as:

Es ∝ ei((ω+∆ω)t+φs)

Ep ∝ ei(ωt+φp) (3.44)

Er ∝ ei(ωt+φr)

Where ω is the laser frequency, ∆ω is the angular frequency shift (2π 100kHz) and φs,r,p are

the fixed or slow-varying phases on each signal so that φp includes the phase shift due to the

plasma.

The detected signal is proportional to the amplitude of the complex field at each detector:

i(t) ∝ EE∗. Dropping the superscripts x, these are:

i(t) = (Ep + Es)(E
∗
p + E∗s ) ∝ 2|Ep||Es| cos (∆ωt+ φp − φs) + E2

p + E2
s (3.45)

r(t) = (Er + Es)(E
∗
r + E∗s ) ∝ 2|Er||Es| cos (∆ωt+ φr − φs) + E2

r + E2
s

A high-pass filter is used to remove the non-time varying components leaving only the

∼100kHz waves which are digitised and the phase difference between i(t) and r(t) extracted

to give ∆φ = φp − φr. In a conventional (non-heterodyne) interferometer without the Es

component, the detected amplitude would vary with φp causing the signal to be entirely lost
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3.3. THE JET INTERFEROMETER/POLARIMETER

when the plasma density is such that the interference is entirely destructive. In this case, the

100kHz signal is always present at the detectors.

For each wave, the phase φp or φr at the detector is given by the integral of the refractive

index along the complete path:

∆φ =
ω

c

∫
N(z)dz (3.46)

This will vary slowly in time (<< 100kHz) as the plasma refractive index changes, but also

if the total integral length changes due to movement of the optical components in only one

arm. The major source for the latter is from the in-vessel mirrors on the lateral channels. To

isolate this motion, the entire system described is duplicated with the 119µm Alcohol laser and

a frequency shift of 25kHz, using the same optics and the same detectors. The details are not

covered here, but the two different frequencies allow the physical movement to be separated

from the plasma change and then removed from the main system phase difference.

The phase difference due to the plasma can be obtained under the cold plasma approximation

using the refractive index solutions in equation 3.25. For the JET system the expression can

be simplified significantly: The propagation direction of all 8 channels lies almost entirely

in the poloidal plane and the magnetic field is dominated by the toroidal field so the angle

between them is large θ ≈ π/2 and terms in cos2 θ small. Even for the high-field side vertical

channel (1), the normalised cyclotron frequency is small Y = ωc/ω ∼ 0.05 and even for the core

channels, the normalised plasma frequency is also small X = ω2
p/ω

2 ∼ 0.003. The first order

term in both refractive index solutions is then simply N ∼ (1− 1
2X) and the phase difference

becomes:

∆φ =
ω

c

∫ z1

0

(1−
ω2
p

2ω2
)dz (3.47)

=
ω

c
z1 −

q2

2cε0mω

∫ z1

0

ne(z) dz (3.48)

The first term is the normal path length and is simply absorbed into all the other constant

phase shifts by defining ∆φ = 0 when the line integral density is zero at the start of the pulse.

Unfortunately, because ∆φ is periodic, if the plasma density increases enough the diagnostic

will eventually present the same data as if it were zero. To mitigate this, the software assumes

that the plasma changes only slowly and keeps track of how many complete periods or fringes

it has passed. If the signal is lost or the density varies too rapidly, it can lose track of the

fringe count causing a ’fringe jump’. The reported density integral will then be incorrect by
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an integer number of fringes, where a single fringe is:

∫ z1

0

ne(z) dz =
2cε0mω

q2
2π (3.49)

= 1 fringe = 1.143× 1019m−2 (3.50)

While these events are common and are usually easily identified and corrected manually, no

reliable automatic correction procedure has been developed so for any given pulse, some of the

8 channels of data may not be available. Where manual corrections have been performed, the

line integrated density calculated from the phase difference (equation 3.47) is in practice very

accurate.

Ideally, the entire system as described so far including the vibrational effects and with the

full refractive index expressions should be used to model the likelihood function for the phase

shift P (∆φ|ne,B, ...). However, in almost all cases this will be calculated from, for example, a

parametrisation of the spatial variation of ne. The size and shape of the posterior P (ne|∆φ)

or anything calculated from it, will be dominated by the degeneracy in ne due to having

only effective line integrated measurements. In almost no cases will the size of the detailed

likelihood (i.e the uncertainty of
∫
nedz given ∆φ) be significant. For this reason, throughout

this work, the line integral densities given by the standard analysis are taken as the ’data’.

The appropriate line integral of the employed ne parameterisation is the forward model and

a Gaussian with the quoted standard uncertainty σD ≈ 1017m−2 is taken for the likelihood

function for each channel.

3.3.2. The Polarimeter - Model for the designed behaviour.

Given the definition of the (x, y) coordinate system, the components of the electric field of the

plasma (p) and shifted (s) waves at the detectors are:

Exs ∝ ei((ω+∆ω)t+φxs ) Exp ∝ ei(ωt+φ
x
p)

Eys ∝ ei((ω+∆ω)t+φys ) Eyp ∝ ei(ωt+φ
y
p)

(3.51)

Recalling the ’i’ detector (x component) signal from equation 3.45 and stating the equivalent
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signal for the ’p’ detector (y component), gives:

i(t) = Ai|Exp ||Exs | cos
(
∆ωt+ φxp − φxs

)
+ Ex2

p + Ex2
s

p(t) = Ap|Eyp ||Eys | cos
(
∆ωt+ φyp − φys

)
+ Ey2

p + Ey2
s

(3.52)

where Ai and Ap are some fixed constant related to the detector sensitivity and gain etc.

These signals are high-pass filtered to remove the constant term and electronically multiplied

and averaged over ∼25ms to produce the following signals:

RMS = 〈i · i〉 PSD = 〈i · p〉

RMP = 〈i′ · i′〉 PSP = 〈i′ · p〉

where i′ is produced by phase shifting the signal i by π/2, which also acquires some unknown

gain Ai′ .

In terms of the electric field components (but dropping the magnitude symbols), with the

averaging over many cycles t >> 2π/∆ω, these become approximately:

RMS ∝ A2
iE

x2
p Ex2

s

RMP ∝ A2
i′E

x2
p Ex2

s

PSD ∝ AiApE
x
pE

x
sE

y
pE

y
s cos

(
φxp + φxs − φyp − φys

)
PSP ∝ Ai′ApE

x
pE

x
sE

y
pE

y
s sin

(
φxp + φxs − φyp − φys

)

These four signals are digitised and manipulated in software to produce the data signals R

and R′:

R =
PSD

RMS
=

(
ApE

y
s

AiExs

)
Eyp
Exp

cos
(
(φxp − φyp) + (φxs − φys)

)
R′ =

PSP√
RMS . RMP

=

(
ApE

y
s

AiExs

)
Eyp
Exp

sin
(
(φxp − φyp) + (φxs − φys)

)

The quantities of interest are those which describe the polarisation of the plasma beam

tan Θp = Eyp/E
x
p and Φp = φxp − φyp. All the remaining A, E and φ terms are unknown factors

of the equipment which should be constant but are not known and so are collected into C and
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φ0:

R = C−1 tan Θp cos (Φp + φ0) (3.53)

R′ = C−1 tan Θp sin (Φp + φ0)

Immediately before the input to the vessel, the plasma beams pass through a linear polariser

and a half-wave plate. Since the input polarisation is linear, the phase difference at the detectors

Φp must be zero when no plasma is present, regardless of the orientation of the detectors (and

hence the coordinate system) with respect to the input polarisation. At the start of every

JET pulse, before any plasma is introduced, the half-wave plates are swept through a large

angle and then returned to their starting position. By fitting the observed R and R′ signals to

equation 3.53 for the sweep, it should be possible to determine the constants C and φ0 along

with the amplitude ratio (and hence polarisation angle) of the plasma beam, in the detector’s

(x,y) frame of reference.

3.3.3. The Polarimeter - Models for the observed behaviour

Unfortunately, the JET polarimeter system behaves in a way that is quite dissimilar to that

described above. The primary indication of this is that the R and R′ signals have a dependence

on Θp during the calibration very different to that described by equation 3.53. Despite much

investigation over several years, the cause of the anomalous behaviour has not been identified.

To make some use of the data, while efforts to isolate the true problem continue, the theoretical

model for the plasma is modified to match the empirically determined R,R′ with some educated

estimation of what the cause could be.

The simplest model which best fits most of the evidence (though not all) is the proposition

that there is some birefringent optical element between the plasma and detectors[60] as illus-

trated in figure 3.4. Its optical axes are orientated at some unknown angle γ to the detector

coordinate frame (with the detector frame at some unknown angle α to the plasma frame),

and introduces an unknown phase shift ρ between those two components. Along with C, φ0

and α of the system design, this description involves one too many unknown parameters than

can be determined by the calibration sweep. Fortunately, it can be shown with some far from

trivial trigonometry[61, 62, 63] that the single remaining degree of freedom in the parameters

does not effect the relationship between the plasma beam polarisation Θp,Φp and the signals

R,R′. This means the calibration sweep determines 4 parameters that can be used to deter-

mine Θp,Φp from R,R′ although the values of this set of parameters do not reveal any details
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of the real physical set (C, φ0, α, γ and ρ). Part of the JET polarimetry standard analysis

code derives (see Appendix A) the plasma polarisation (given as ψp, χp) from the calibration

fit using this procedure.

Figure 3.4.: Principle for ’unknown birefringent optics’ model for the JET polarimetry
diagnostic.

The 4 calibration factors are extremely well determined from the calibration sweep data.

Taken with the very large signal to noise ratios of PSD,PSP,RMS,RMP , the uncertainty

in (Θp,Φp)/(ψp, χp) should be much less than a degree on signals of up to 15 degrees and so

the diagnostic should be extremely accurate, even with the unknown effects. Unfortunately,

the model often can not accurately describe the observed calibration data and so can not be

an accurate description of the system. It is this which causes the largest uncertainty in the

calculated polarisation, something which is almost impossible to quantify directly.

With forward modelling and especially Bayesian analysis, this causes the problem that an

accurate likelihood distribution cannot be constructed. Of course, this problem is just as real

and as difficult to quantify for any non-Bayesian analysis procedure, though it is often less

obvious that this is the case when using them. The most practical solution is to use a simple

likelihood model, centred on the plasma polarisation as determined by the standard analysis

(ψp, χp from section A). The width of this likelihood (the uncertainty) can be estimated

by comparing this with the prediction of the plasma forward model from plasma parameters

determined from other diagnostics. In this case, the plasma parameters to be determined are

the electron density ne and magnetic field B.
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4.1. Interferometry Results - Density Profile and Current

Inversions

As discussed in section 3.3.1, the interferometry likelihood P (Di |ne(R,Z)) is sufficiently mod-

elled as a fixed width Gaussian distribution, centred on the line integrated electron density

along each line of sight. If the density at any spatial point ne(R,Z), is a linear function of the

parameters used, the determination of those parameters from the (fringe-corrected) interfer-

ometry data Di satisfies the conditions of the truncated linear Gaussian inversion (TLGI - see

section 2.3).

The 8 lines of sight available on JET are clearly insufficient to obtain any certainty on a

complete 3D or even 2D (e.g. assuming axisymmetry) parametrisation. For low-flow equilib-

rium, electron density should be approximately constant on each closed flux surface (see section

1.3) which allows the density to be parametrised as a 1D function of normalised poloidal flux

ne(ψN ). For the SOL surfaces, the assumption may be slightly less valid, but since all but one

of the lines of sight are very insensitive to the SOL density, the uncertainty will always be far

larger than any systematic error due to this assumption.

4.1.1. Fixed equilibrium ψN with simple prior

To maintain linearity, the single fixed flux map ψN (R,Z) taken from the standard equilibrium

analysis (EFIT) is used and a simple linear interpolation of a series of knots at fixed ψN is

used for ne(ψN ). The values of ne at the knots serve as the parameters. To allow the use of

the TLGI, the prior must also be expressed as a Gaussian. The simplest form to use is an

independent normal distribution on each knot, centred at zero with +1σ slightly higher than

JETs maximum operating regime and truncated so that P (ne < 0) = 0 since densities cannot

be negative.

Figure 4.1a shows the described inversion to P
(
ne |Di, ψN

)
for a typical JET L-mode

plasma, given the fixed flux surfaces of the standard magnetics-only equilibrium and the simple

Gaussian prior.

These profiles look immediately ’incorrect’ to any even mildly experienced Tokamak physi-

cist, since it is usual to expect fairly smooth profiles throughout the plasma core, where there

is no reason for cross-field transport or particle source rates to change significantly over short

length scales. The posterior here does not in-fact exclude such profiles and shows that the

short length scale information cannot be determined by the line integral measurements. Fig-

ure 4.1b illustrates this, showing that this degeneracy is correctly described by the posterior.
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Figure 4.1.: a) Profiles at maximum (thick) and at 20 samples (thin) from posterior
P
(
ne(ψN ) |Di, ψ

EFIT
N (R,Z)

)
using a simple uncorrelated Gaussian prior P (ne) =

G
(
ne; 0, 1021m−3

)
for ne > 0. b) Values of two neighbouring knots for 10000 sam-

ples showing degeneracy due to integrated measurements. The HRTS standard
analysis results are shown with orange triangles.

The average ne in the region of the two neighbouring nodes shown is fairly well determined,

but the difference not. The posterior is correctly showing that with no other information, such

large amplitude oscillations with short-wavelength could exist in the plasma.

4.1.2. Smoothing priors

Clearly, this claimed knowledge that transport and source rates do not change over short

length scales should be included in the prior. To maintain applicability of the TLGI, this belief

must be represented as a multivariate Gaussian over the parameters. A common approach is

to include a Gaussian prior probability on the difference between each neighbouring pair of

nodes. Each Gaussian is usually centred on 0, with a fixed width across the whole profile, or

across separated regions such as the plasma core and edge. The effect is to smooth the profiles

by constraining the first differential and hence it is known throughout this work as the first

differential smoothing prior. The general expression is 1:

logP (y(x)) = − 1

2σ2
dy
dx

N−1∑
i=1

[
(yi+1 − yi)
(xi+1 − xi)

− 0

]2

(4.1)

An alternative is to apply a Gaussian to the change in this difference between each pair of

1As stated, equations 4.1 and 4.2 are improper priors because they do not integrate to a finite value. This
would have no real consequence, since the likelihoods used here always ensure that the posterior is a proper
PDF. However, in the software framework these priors are expressed as multivariate Gaussians and are
required to be finite in order for it to manipulate the covariances. To do this, an uncorrelated normal
distribution is added to the logP with σ set many orders of magnitude greater than the expected range in
y, so the priors used are in fact, proper PDFs. Either way, this has almost no effect on the posterior.
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nodes and the next, giving the second differential smoothing prior :

logP (y(x)) = − 1

2σ2
d2y

dx2

N−1∑
i=2

[
(yi+1 − yi)
(xi+1 − xi)

− (yi − yi−1)

(xi − xi−1)
− 0

]2

(4.2)

In this case, these can be applied either to the spatial derivatives or to the derivative with

respect to the normalised flux.

The electron density gradient in steady-state is determined by the local electron particle

transport and the local electron source rate and since there is no prior information about the

magnitude of these, the first differential constraint, which prefers small gradients is hard to

justify. However, the second differential constraint fits the belief that these gradients should

not change rapidly over short scales. Since the parametrisation in this case is over normalised

flux, it is most practical to constrain d2ne/dψ
2
N . (The constraints are sufficiently weak that

applying it to the true spatial differentials d2ne/dr
2 instead, has little effect on the results).

Without a detailed model for the physics determining the transport and source rates, any exact

value of σd2ne/dψ2
N

is hard to justify. In general, the value chosen is one that is strong enough

to suppress wild variations in the profile due to diagnostic noise, but weak enough that the

observed data remains inside the bulk of the likelihood distribution (i.e maintaining χ2 ∼< 3

for all the data). Usually, there is a range of one or two orders of magnitude that satisfies these

conditions, and makes little difference to the inferred profiles.

Figure 4.2 shows the posterior obtained with the second differential smoothing prior with

σd2ne/dψ2
N

= 1.0× 1021m−3.

Figure 4.2.: a) Profiles at maximum (thick) and at 20 samples (thin) from posterior
P
(
ne(ψN ) |Di, ψ

EFIT
N (R,Z)

)
using second differential smoothing prior. Also

shown are curves at 1, 2 and 3σ of the prior used. b) Profile of marginal PDFs from
the same posterior. The HRTS standard analysis results are shown with orange
triangles.

Considering that only 8 data values relating to ne have been used in the inversion and that

the smoothing prior is relatively weak, the results of the inversion are surprisingly close to
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those of the HRTS diagnostic shown for comparison. For several values of ψN , the certainty

is reasonably high, shown by the ’hot spots’ in figure 4.2b. These correspond to the values of

ψN for which one of the lines of sight is tangential to the surface, making that data value very

sensitive to the density on that surface.

The remaining large discrepancy is only in the very core of the plasma (ψN < 0.4) where

the posterior samples all show structure that is not seen in the HRTS profile, and which is

difficult to see any cause of in this stable and quiescent L-mode plasma. Again, the posterior

is in fact correct. It does show all reasonably probable ne profiles, given ψN . If the profiles

are considered improbable, the implication is that the fixed ψN is improbable (or possibly one

of the other assumptions). The large uncertainty for ψN > 1.15 appears because the density

here has little effect on any of the channels. Some channels enter this region only briefly while

others pass behind the first wall before this level of ψN is reached and so the model does not

include them at all. Under the assumption that there will be no significant electron density in

the toroidal shadow of the first wall, in the interferometry beam passages, or on flux surfaces

that are only inside the first wall for some channels, a prior can be included that constrains

this region to very low or zero density. However, given that channel 1 already constrains

ne(ψN ≈ 1.1) to very low density, this has little effect on the rest of the profile.

4.1.3. Interferometry and current tomography - Free ψN non-linear

inversion.

If the electron density is the object of interest, then the posterior really desired is P (ne |Di)

which is equal to that found in the last section P
(
ne |Di, ψN

)
, integrated over all possible

flux surface arrangements. This would be as uninformative as assuming nothing of the 2D

geometry and parameterising ne(R,Z) directly and so the PDF would give almost any possible

electron density. However, some information about the flux surface geometry can be gained

from the magnetic diagnostics by including their data Dm to give the posterior P (ne |Di, Dm).

Practically, this is a combination of the current tomography (CT) from section 2.5 and the

density inversion from the last section with ψN calculated from the toroidal current beams jφ.

The toroidal currents jφ and electron density knots ne form the complete set of parameters.

This unfortunately introduces the non-linear relationship between the interferometry data Di

and the currents jφ, since a change to jφ changes both the normalisation and geometry of ψN .

This non-linearity turns out to be weak enough that the LGI procedure can still be performed

and while the resulting Gaussian is not a good enough approximation to the real PDF to
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draw samples directly, it does give the approximate global shape, especially for the strongest

correlations. After appropriate rescaling, it performs excellently as a proposal distribution for

the Metropolis Hastings MCMC (see section 2.4.5), something that is otherwise extremely hard

to obtain in the high dimensionality necessary to correctly describe the toroidal currents jφ.

Practically, the use of the approximate TLGI reduces the execution time of the MCMC by

over an order of magnitude.

Figure 4.3 shows the density profiles from the full posterior. The inversion is to a parametri-

sation of 50 knots of ne(ψN ), 217 plasma current beams spread inside the first wall and 48

Iron-core current parameters. The priors used were the second differential prior on ne with

σd2ne/dψ2
N

= 1.0 × 1021 and a very weak Conditional-Auto-Regressive (CAR) prior over the

plasma currents.

Figure 4.3.: a/c) ne Profiles for 20 samples and b/d) profile marginals from posterior
P (ne(ψN ), jφ |Di, Dm) using second differential smoothing prior and free plasma
currents, versus a/b) ψN and b/d) Rmag. The HRTS standard analysis results are
shown with orange triangles.

As well as the density profile, each sample of P (ne, jφ |Di, Dm) contains a complete de-

scription of the toroidal current. Comparing this to the posterior from current tomography

alone P (jφ |Dm), indicates the information that the interferometry data (and the ne prior)

provides about the currents and hence the magnetic geometry. Figure 4.4 shows the separatrix

and magnetic axis position from samples of the two posteriors to demonstrate the principle.

In this case, the apparent accuracy might be easily obtained simply by increasing the prior

assumptions (e.g. using a strong CAR prior, or assuming equilibrium) but the improvement
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here has been derived directly from the data of a diagnostic not normally considered capable

of measuring anything about the plasma current.

Figure 4.4.: Comparision of magnetic configurations of the posterior from Current Tomography
(CT) alone and including interferometry data and electron density profile prior,
with the same parameterisation and prior for toroidal currents. a) Separatrix
and magnetic axis position for 100 samples from posterior for left) CT only and
right) CT+interferometry. Interferometry lines of sight and first wall (black) and
standard magnetics EFIT axis position (green diamond) are also shown. b) PDFs
for top) Rmag and bottom) Zmag each showing CT-only (blue), CT+interferometry
(red) and EFIT (green).

At first glance the results are concerning, since it is hard to believe that 8 numbers can

provide information about the plasma currents at the same time as electron density profiles

that appear to have a similar resolution as the HRTS system. It should be emphasised though,

that the electron density priors (the smoothing and assumption of constancy on flux surfaces)

are providing much of the information and the results are accurate because the priors are good

priors for L-mode plasmas.

For H-Mode plasmas, the transport rates change rapidly across the plasma edge and hence

the smoothing prior must be relaxed, even if only in this region. Unfortunately, JET H-mode

shots are usually positioned in such a way that the interferometry line of sight which measures

only SOL density (channel 1) is further from the plasma edge, as seen in figure 4.5b. The

pedestal information is effectively provided by this channel and the difference between the two

core channels (channels 2 and 3) which couples the density near the X-point to the plasma

core. To illustrate this, figure 4.5a shows the integration weights and density profile (at the

posterior maxima) for the L-mode plasma of figure 4.3 and for a typical H-mode plasma. It

is clear that the pedestal region of the H-mode pulse is illuminated by even less information

than in the L-mode case. The only information about the profiles between around ψN = 1.0

and ψN = 1.2 is in the prior and so almost all samples drawn from the PDF have a constant
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gradient in that region. This has a knock-on effect on the core, due to the differences between

channels 2 and 3, which can be seen by comparing the posterior profile marginals to the HRTS

standard analysis in figure 4.6.

Clearly, it will not be possible to infer the shape of the H-mode pedestal from the interferom-

etry alone. However, the data does hold some information about it and this subtle information

content is relied upon in chapter 5, in which the interferometry model is used with forward

models developed for a pair of diagnostics which, taken independently, provide shape detail

with unknown absolute magnitude.
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Figure 4.5.: a) Integration weights over ψN and ne(ψN ) at posterior maximum for typical
L-mode (top) and H-Mode (bottom) plasmas. b) Separatrix (ψN = 1) for both
plasmas relative to lines of sight.

Figure 4.6.: Profile marginals from posterior P (ne(ψN ), J |Di, Dm) for H-Mode plasma using
second differential constraint ’smoothing’ prior and free plasma currents.
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4.2. Accuracy of the Polarimetry Diagnostic Model

As discussed in section 3.3.3, the polarimetry model is split into two stages: the plasma model

which gives the polarisation of the wave leaving the plasma (ψ, χ) and JET system model

which determines the data (R,R′). The former is assumed to be accurate here (at least for

low Te plasmas) as it is used regularly in plasma polarimetry on other Tokamaks and plasma

experiments. The diagnostic model is an ad-hoc model, constructed to fit behaviour that is not

understood. In order to examine the validity of this part, this section compares the measured

polarimetry data with predictions of the model, based on electron density and magnetic field

information obtained from the interferometry and magnetics.

4.2.1. Statistical Comparison

The full two-stage forward model could be used to predict the data (R,R′) and this compared

to the measured (R,R′). Instead, the first stage is used to determine the predicted polarisation

after the plasma (ψp, χp) and this is compared to (ψd, χd) - the polarisation after the plasma

derived from the measured data (R,R′) using the diagnostic system model (by the standard

analysis code). The comparison is made in (ψ, χ) space because they retain some physical

relevance to the plasma. In the first approximation, ψp is described by Faraday rotation

(equation 3.40) which is sensitive to ne and the beam-parallel field B‖ which is the poloidal

field, given the channel set up. The ellipticity χp is approximated by the Cotton-Mouton

effect (equation 3.42) which is sensitive to ne and B⊥. B⊥ is dominated by the the accurately

known vacuum toroidal field (the field created by the toroidal field coils) which for the vertical

channels is constant as it varies only with major radius. The consequence is that, for the

vertical channels, χp is proportional to line-integrated ne and so should be well determined by

the interferometry and not strongly effected by less accurately known poloidal magnetic field.

Ideally, the forward model would be used on samples of the full non-linear CT + Interfer-

ometry inversion of 4.1 so that the uncertainty in the prediction includes both the uncertainty

of ne and of B given both the interferometry and magnetics. Unfortunately the non-linear

algorithms are too computationally expensive to allow a good statistical comparison on a large

number of time points. Instead, ψN and B are fixed to the EFITJ solution so the prediction

uncertainty includes only that on ne from the fixed ψN interferometry inversion. The system-

atic error this was shown to introduce only significantly affects ψN and B in the plasma core

(which is seen qualitatively in the results here and proven later when analysing the equilib-

rium uncertainty itself with Bayesian methods). The distribution of predictions produced is
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therefore P (χp, ψp |Di, J
EFIT ).

Figure 4.7 shows the prediction/measurement comparison at 14ms intervals over a typical

H-Mode JET pulse and the statistical comparison including 50000 time points over ∼ 1000

pulses covering several years of JET data.
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Figure 4.7.: : Column 1: Principal polarisation angle ψ after plasma comparing prediction
from EFIT and Interferometry mean (blue) and uncertainty (gray) with the polar-
isation angle derived from data (black) for JET pulse 70545. Column 2: Predicted
versus data derived ψ for ∼ 1000 pulses. Column 3: Prediction mean (red) and
uncertainty (gray) of ellipticity angle χ compared to data derived value for the
single pulse. Column 4: Predicted versus data derived χ for ∼ 1000 pulses. Rows
show channel 3 - core channel sensitive to uncertainty in EFIT solution, channel
5 - Example of good calibration fit and channel 6 - failed calibration fit. Points in
scatter plots are coloured according to experimental campaign.

It is immediately clear that the that the data derived polarisation (ψd, χd) is far outside the

uncertainty in the prediction (ψp, χp) in many cases. For ψ, the general trends appear to be

correct and the statistics show approximate agreement with some spread. For χ, the situation

is far worse, with only channel 5 showing agreement within uncertainty and channel 6 showing

none at all. It is possible to believe that the disagreement for ψ of channel 3 is entirely due to

inaccuracy in the equilibrium solution as it passes close the core and the disagreement exists

only during H-mode (54s < t < 62s) where EFIT is unable to properly describe the current and

pressure profiles. However, this cannot be argued for χ which is not sensitive to the poloidal
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field or flux geometry on any channel. It also does not explain ψ on channel 6, which does not

pass near the core. Channel 5 is the single good case, as it shows largely consistent agreement

in both ψ and χ.

Channel 6 of figure 4.7 also shows a large oscillation-like variation in both ψd and χd.

Plotting either of these, or the raw signals, against the line integrated density shows that

there are clear sinusoidal oscillations in
∫
nedl, with a wavelength of almost exactly one fringe.

The appearance of these can be derived, by adding the term δeiωt to Es in equation 3.44,

representing a non-shifted component with small amplitude δ, in the signal that is supposed

to be frequency shifted. This shows that it would interact with the plasma channels to give a

variation with density, behaving similar to a simple non-heterodyne interferometer. Whether

or not this is the real cause of these oscillations is not yet known but it does predict that they

vary slightly in phase and amplitude with both ψd and χd, which is also observed in the data.

This makes their isolation and removal by post-processing difficult.

Given that the mapping (R,R′) → (ψ, χ) is a complex combined operation based on the

unknown optics model and the diagnostic calibration, the severe disagreement and oscillations

seen in χ should also raise suspicion of ψ on those channels and pulses. Any useful attempt

to analyse the JET polarimeter data must consider the effects of the diagnostic model itself.

Despite this, many attempts[54, 55, 57] have been made to asses the accuracy of different

approximations of the plasma polarisation evolution by comparing them with the data-derived

(ψD, χd), without any consideration of the diagnostic’s behaviour or calibration.

For completeness, figure 4.12 (page 85) shows the traces and statistics for the remaining

channels.

4.2.2. Examination of Calibration Mapping

The right pane of figure 4.8 shows the measured signal (R,R′) for the pulse shown in figure

4.7 and a regular grid in that space. The left pane shows the same signal and grid mapped

to (ψ, χ) space according to the diagnostic model and calibration, compared with the mean

prediction trace. The full signal includes the calibration sweep of input polarisation angle

before the plasma starts. This sweep is in ψ only with χ = 0 and the calibration procedure

tries to fit the parameters so that the data calibration trace (magenta) maps to the χ = 0 line

(cyan).

For channel 5, the procedure clearly works well. The calibration sweep has been reasonably

well fitted to the real calibration sweep line and the plasma part of the trace (red) matches

the prediction (blue) well, explaining the agreement seen in figure 4.7. For channel 6, shown
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Figure 4.8.: Channel 5: Good calibration.
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Figure 4.9.: Channel 6 - Poor calibration.
Each shows left) the mean predicted polarisation during plasma (blue) and during calibration
sweep (cyan) compared to mapped data during plasma (red) and during calibration (magenta).
right) Measured data in (R,R′). Both graphs also show a regular (R,R′) grid.

in figure 4.9, the calibration has almost entirely failed. The sweep signal has not been fitted

to the real sweep and so it is not surprising that the plasma trace does not agree either. The

large oscillation is also clearly present in the measured data.

Figure 4.10 shows the mapping for channel 3. In this case, the calibration signal has been

successfully matched to the real sweep and the Ohmic part of the plasma (χ ∼> −3) appears

to be matched well. If the disagreement in the H-Mode part of the pulse is to be blamed on

the calibration, a very localised distortion to the calibration mapping would be required and

so it seems likely that the mapping is in fact reasonably accurate and that it is the inaccuracy

of the EFITJ solution in the plasma core which causes the disagreement in this case. It is not

clear however, how accurate the ψd derived by the calibration is, given that it is so far from

the χ = 0 calibration line.
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Figure 4.10.: Mapping as in figure 4.8, but for channel 3 passing through the plasma core.

Unfortunately, until the unknown effects in diagnostic which cause the errors in the (ψ, χ)←→

(R,R′) mapping are resolved, or a more rigorous model is developed, the uncertainty on (ψd, χd)

has to be estimated in each case by studying the mapping in this way.
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4.2.3. Predictions from Current Tomography

The Current Tomography method in principle provides a way to determine if the disagreement

in channel 3 during H-Mode could be due to inaccuracy in jφ, since it provides jφ with uncer-

tainty. Ideally, the data-derived ψd would be compared to a prediction from the full posterior

P (ne, jφ | Dm, Di) but, as mentioned earlier this is not practical for a large number of time

points. However, it is possible to find an over-pessimistic (larger uncertainty) approximation

by drawing samples from the magnetics only inversion P (jφ | Dm) including the CAR prior

and then performing the fixed ψN interferometry inversion to P (ne | Di, jφ) on each sample

of the first. Both inversions can be performed using the (T)LGI and so drawing samples is

inexpensive. The PDF described by the samples (which does not relate to any rigorously de-

finable one) is conceptually similar to P (ne, jφ |Dm, Di) except in that it does not include the

information that the interferometry and ne priors give about jφ.

Figure 4.11 shows the mean and ±2σ of ψp from these samples and the data-derived ψd for

an H-Mode pulse compared to the same from EFIT for channels 3 and 5.
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Figure 4.11.: Data-derived principal polarisation angle ψd (black) compared to predictions ψp
from EFITJ solution (red) and Current Tomography P (jφ | Dm), P (ne | Di, jφ)
(blue).

The spread of ψp predictions does include the data-derived ψd for the H-Mode section,

showing that ψd is not incompatible with the magnetics and interferometry data under the

CT model and CAR prior. However, the large spread covers almost any sensible value and

far exceeds the disagreement between EFITJ and the polarimetry data. While this does mean

that the CT and CAR prior do not help quantify the accuracy of the polarimetry calibration,

it suggests that if the accuracy were known, including the polarimetry data in the CT system

would provide a significant amount of extra information about jφ, since it will exclude a large

part of P (jφ |Dm).
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Figure 4.12.: Trace and statistical comparisons as in figure 4.7 for channels 1, 2, 4, 7, 8
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4.3. Comparison of High Temperature Models

4.3.1. Finite Temperature Effects

The plasma polarisation evolution model used so far was based on the electron fluid momentum

equation (equation 3.8) with the pressure and collisional terms neglected, which is the cold

plasma approximation. In more thorough treatments (see for example [52]) which begin from

the full momentum equation and assume a Maxwellian (relativistic or classical) electron velocity

distribution, the dielectric tensor is found to have terms including the temperature Te, these

are known as finite temperature effects.

Recently, the effect of finite electron temperature Te on the polarisation evolution has been

studied, giving ’warm plasma’ approximations to first order in normalised electron tempera-

ture τ = Te/(mec
2) in the non-relativistic[64] and weakly relativistic[65] limits. While these

approximations had previously been used in the evaluation of plasma polarimetry[54], they

had never been verified by experimental observation. This section compares the data derived

values of induced ellipticity χd, taken from the JET Polarimeter standard analysis, with pre-

dictions of the forward model based on the cold plasma as in the last section and using the

non-relativistic and relativistic approximations given by each of these papers.

For high Te plasmas, electrons with high thermal velocity experience a Doppler shifted

incident wave and so their contribution to the plasma’s effect on the wave is modified. This is

addressed in [64], where the evolution vector Ω is calculated from the non-relativistic plasma

dielectric tensor. An asymptotic expansion is used for the plasma dispersion function and

terms above first order in τ are dropped. The result, written in terms of the cold plasma

approximation Ωc, is the non-relativistic warm plasma approximation Ωn:

Ωn ≈ Ωc + τ


12 Ωc1

12 Ωc2

3 Ωc3

 (4.3)

It is argued in [64], that the non-relativistic limit is sufficient to describe plasmas up to at

least Te = 15keV. However, it was later shown in [65] that the relativistic mass increase of

high velocity electrons affects their response to the wave’s electric field by a similar magnitude

to the non-relativistic finite Te effects. A calculation including both effects to first order in τ

is given using a new iterative technique. Written in terms of the cold approximation Ωc and

assuming the refractive index N ≈ 1, this relativistic warm approximation Ωr is given[65] as:
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Ωr ≈ Ωc + τ


9/2 Ωc1

9/2 Ωc2

−2 Ωc3

 (4.4)

4.3.2. Model Evaluation

As before, the forward model is evaluated from ne profile samples taken from the posterior

P (ne | Di, j
EFIT
φ ). Te is provided by the core LIDAR TS standard analysis code. These Te

measurements are prone to large random fluctuation on individual data points, occasionally

giving unphysical large values which result in large jumps in the temperature effects calculated

from 4.3 and 4.4. As the Te values are provided with a well calculated uncertainty, the Te

profile as a function of ψN is modelled as 3-point spline function and fit to the LIDAR data

points. Given that the theoretical Te effects are relatively small, and so Te is required to an

accuracy of only around 1keV, any systematic effect this procedure causes will be negligible.

For analysis of the high Te effects, channel 3 is used as it has a reasonably stable calibration

and passes through the plasma core where Te is typically largest (up to approximately 12keV).

For the full range of JET plasmas, this channel measures rotations of ∆ψ < 15o and ellipticities

of χ < 8o. The beam-perpendicular magnetic field B⊥ is dominated by the toroidal field and the

channel is set up with initial polarisation at 45o to this. The channel therefore approximately

satisfies the assumptions of equations 3.40 and 3.42. Further to this, B⊥ is dominated by the

externally applied ’vacuum’ field which varies with major radius as 1/R and since channel 3

lies at constant R, the B⊥ term is effectively constant and can be taken outside the integral.

This means χ is approximately proportional to line integrated density, which is known to an

accuracy of less then 1% from the interferometry system. It should therefore be possible to

calculate χ to a greater accuracy than the difference between the three models.

As shown in section 4.2, the rotation ∆ψ is heavily dependent on the poloidal magnetic field

which is determined from the equilibrium code. As this is based only on magnetic measurements

far from the centre of the plasma, it is heavily determined by the constraints made on the

pressure and current profiles which can result large inaccuracies. The primary effect on channel

3 of any inaccuracy in the equilibrium reconstruction is effectively just the incorrect positioning

of the magnetic axis. It is therefore possible to approximately include it in the ψ/χ uncertainty

by varying the line of sight position in the poloidal plane randomly by 4cm about its prescribed

position for each ne sample.

For χ, the calculation uncertainty determined in this way is typically 0.4%, which is signifi-
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Figure 4.13.: Time traces for three high Te JET pulses showing data-derived induced ellipticity
χd (points) and ellipticity calculated from the the cold plasma χc (blue/lower
line), non-relativistic χn (green/top line) and relativistic χr (red/middle line)
approximations. The three pulses show apparent agreement with a) χc, b) χn

and c) χr. Measurement uncertainty is principally from calibration so not shown
and prediction uncertainty due to ne, Te, B is σχ ≈ 0.4% for all points (not shown
for clarity).

cantly smaller than the associated temperature effect of approximately 2% for 10keV. For ∆ψ,

the typical calculation uncertainty is 10% which is much larger than the typical temperature

effects of less than 1% at 10 keV. Therefore, in this section, only the induced ellipticity χ is

studied.

4.3.3. Pulse selection

Unfortunately, because the error on the data-derived plasma induced values (ψd, χd) comes

primarily from the calibration, it is systematic for all data from a single pulse. Given this, and

that it is typically at least as large as the difference between the three approximations, it is

easy to find individual pulses which appear to agree with any of the models, as shown in figure

4.13.

As shown in section 4.2, due to the complex and partly unidentified nature of the variation

in the calibration, the uncertainty on the measured ellipticity angle χd cannot at present be

accurately characterised. However, over a suitably large range of pulses and campaigns, it can

be seen that except for pulses with very large ellipticity, the predictions of the cold model agree

on average with data-derived values from cold (Te < 3keV) pulses (see row 1 column 4 of figure

4.7). Under the assumption that the basic cold plasma propagation theory is correct for cold
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plasmas, this indicates that the average calibration is correct.

In this case, it is useful to investigate a large number of pulses over many years and a

wide range of plasma parameters. Originally, all JET pulses between 2003 and 2007 with

valid interferometry, polarimetry and LIDAR Te data were selected, giving over 1200 pulses.

For each of these, equation 3.42 was used to calculate an approximate prediction for χ which

was compared against the data-derived χd for cold regions of each pulse (core Te < 3 keV).

Pulses with a large disagreement (χd − χ > 20%) in these regions were rejected as having

too large a calibration error to be useful, under the assumption that the the basic theory is

correct for low Te plasmas. In the high Te regions of such pulses, the disagreement between

the measurement and all the models would be much larger than the difference between the

models. Also rejected were pulses with very high uncorrelated instrumental random noise and

very large clear oscillations. This selection leaves 268 pulses which, at 250ms intervals, contain

over 23000 data points.

4.3.4. Statistical Comparison

Figure 4.14 shows a statistical overview for the remaining pulses of the difference between

data-derived ellipticity and that calculated using the plasma forward model with the three

different forms of Ω.

The predictions from the cold model show a clear systematic underestimate for χ > 4o, the

non-relativistic warm model shows a clear over-estimate and the relativistic model shows the

least systematic disagreement. At first glance this seems fairly conclusive. However, even for

high χ, any low Te data points should be correctly predicted by the cold plasma approximation

but almost no correctly predicted data can be seen for χ > 6o in figure 4.14a. The absence of

these could simply be because the high density and hence high χ JET pulses also tend to have

high temperature but from this graph it cannot be ruled out that the average calibration simply

gives an incorrect dependence on the real plasma χ, which is coincidentally well compensated

for by the relativistic Te correction.

4.3.5. Temperature Dependence

To demonstrate that the better agreement with the relativistic model seen in figure 4.14 is

due to the high Te effects, the disagreement with the cold plasma model must be shown to be

correctly Te dependent. A preliminary indication of some dependence can be seen in figure

4.14a at χ ≈ 4o where the high Te points (red) do have, on average, a greater under-estimation
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Figure 4.14.: Difference between calculated and data-derived induced ellipticity for 250ms
intervals of 268 selected shots. Calculation performed with a) cold plasma model,
b) non-relativistic and c) weakly relativistic linear Te corrections. The 23000
data points are coloured by core Te at each time point. Data point vertical
height represents uncertainty in calculated χ from uncertainty in ne profile and
channel position.
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than the medium Te data (green). This cannot be seen in the relativistic model’s predictions

(figure 4.14c). To investigate this further, it is possible to examine the approximate dependence

on Te directly. The approximate ellipticity, in terms of the vector Ω, is given[53] by :

χ ≈ 1
2

∫
Ω1 dz (4.5)

For the cold plasma approximation, substituting Ωc simply gives equation 3.42. Substituting

Ωn from equation 4.3 or Ωr from 4.4 and assuming constant B⊥ leads to the following expression

for the difference between the respective warm approximation and the cold plasma model

prediction:

χn,r − χc ≈ αn,r C1B
2
⊥

∫
τ ne dz (4.6)

The constant α is αn = 6 for the non-relativistic model and αr = 2.25 for the relativistic

model.

Figure 4.15 shows the difference between the measured and cold model ellipticity χ − χc

against x = B2
⊥
∫
Te ne dz for all data points in figure 4.14 with χ ≥ 1o. Those with χ < 1o

have been removed from the data set as they come almost exclusively from the pulse ramp up

and down periods and do not contain any useful information about the temperature effects (see

figure 4.3.4), leaving 15000 data points. Also shown are the linear relationships from equation

4.6 for both the non-relativistic and relativistic models and the χ − χd = 0 line representing

the cold plasma approximation.

Figure 4.15.: Difference between measured ellipticity and that calculated from the cold plasma
model χ− χc plotted versus x = B2

⊥
∫
Te ne dz. Individual data points at 250ms

intervals of 268 pulses are shown above contours of a kernel density estimate
from these. Also shown are the approximate theoretical relationships for the
three models and a simple linear least-squares fit to the data.

It is immediately clear that the data is in better agreement with the relativistic model and
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α
|α−αfit|
|αr−αfit|

|α−αfit|
σα

Fit 2.94 - -

Cold 0.00 4.26 59

Non-relativistic 6.00 4.43 62

Relativistic 2.25 1 14

Table 4.1.: Theoretical and fit values of α for equation 4.6; difference between each model and

fit value normalised to the relativistic model and multiples of its uncertainty that

fit value lies from each theoretical value for an estimate of σχ = 0.09o.

that qualitatively, the agreement with this model is good given the spread of the data by the

calibration variation. This constitutes the experimental observation of relativistic effects from

the JET polarimeter.

A simple linear least-squares fit to the data was performed assuming independent Gaussian

distributed random noise of a constant value, denoted σχ, for all data. Without a complete

model of the calibration uncertainty, σχ is difficult to assess but evaluated in terms of this, the

linear fit gives a gradient of αfit = 2.94 with uncertainty σα = 0.57σχ and with a constant offset

of −0.05o. The constant offset describes the part of the difference between the measurement

and cold approximation which is not a function of temperature and most likely indicates a

small bias is present in the average calibration.

Even without a specific value of σχ, it is possible to quantify the relative agreement of each

of the three models by evaluating the relative difference of αfit from α for each. Table 4.1

gives this difference for each model normalised to 1 for the relativistic model. Given that the

non-relativistic and cold plasma models are over 4 times further from the fit value than the

relativistic value, it can be seen quantitatively that the data is in far better agreement with

the relativistic model.

Further to comparing the three models, it would be useful to assess to what degree the

data agrees with the relativistic model. Unfortunately, αfit is of little use for this without

its uncertainty and therefore requires an absolute value for σχ. A very approximate estimate,

found by analysing the spread of (χ − χc) about the linear fit, gives σχ = 0.09o and hence

σα = 0.05. Table 4.1 shows the multiples of this by which αfit lies from the theoretical value,

for each model. For the relativistic model, the fit gradient αfit lies 14σ from αr which appears

to indicate that, while it out performs the others, the data does not actually support the

relativistic model. This large disagreement comes from the apparently very small fit uncertainty
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σα ( < 2%) which is not surprising given that it is based on 15000 data points. If the only

uncertainty on the data was the independent Gaussian distributed random noise that was

assumed, an average over this much data really would give a value for αfit of this accuracy.

Unfortunately, this is almost certainly not the case. For instance, since most of the variation is

from the calibration uncertainty which is systematic for each pulse and the data only contains

268 pulses, the errors cannot be considered independent. To correctly assess the validity of

the model, it is necessary to correctly and completely model the calibration procedure and the

uncertainty in χ that results from it. With this, the quantity of data may even be sufficient to

observe the finite Te effects to second order in τ .

4.3.6. Re-calibration

While the comparison of the models in the previous section is almost entirely conclusive, it

could be argued that the relatively subjective selection process of section 4.3.3 introduces a

bias which favours the relativistic model. In reality, since the selection involved the comparison

of the measurements to equation 3.42, it is most likely that it would bias the results toward

the cold plasma model. However, further evidence can be seen for supporting the relativistic

model from some of the the pulses rejected in section 4.3.4.

Pulses where the measured data completely disagrees with all the models can be re-calibrated

by fitting an arbitrary (R,R′)→ (ψ, χ) mapping so that the (R,R′) signals map correctly to the

predictions based on EFIT. For this analysis, again under the assumption that the theoretical

model is correct for low Te plasma, the signals are fit on periods of the pulse where Te < 3keV

and are fit to the cold model. Figure 4.16 shows such a pulse with both its original calibration

and after the calibration fitting procedure.

As the fit is performed to the predictions of the cold model, the procedure is most likely to

bias the results toward this. Despite this, the re-calibrated measurement is in clearly better

agreement with relativistic model. Figure 4.17 shows χ−χc from the re-calibrated data along

with the three theoretical approximations as in section 4.3.5. Also shown is the result of a

linear least-squares fit to the data, which gives (as in section 4.3.5) a linear dependence of

αfit = 2.74± 4.4σχ.

Again, it can be seen immediately that the agreement with the relativistic model is far better

than with the other two. Quantitatively, the cold and the non-relativistic model values for α

are respectively 5.6 and 6.7 times further from αfit than the relativistic value. This gives

further evidence to the main conclusion of section 4.3.5 and demonstrates that with accurate

calibration, the JET polarimeter can observe relativistic effects on individual pulses.
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Figure 4.16.: Time trace for a single high Te JET pulse showing calculated (lines) induced
ellipticity χ from each model. Measured data (points) is shown using a) the
original calibration and b) the calibration re-fit to the cold periods.

Figure 4.17.: Difference between measured ellipticity and that calculated from the cold plasma
model χ−χc plotted versus B2

⊥
∫
Te ne dz. Individual data points at 50ms inter-

vals of a single pulse after re-calibration shown above contours of a kernel density
estimate from these. Also shown are the approximate theoretical relationships
for the three models and a simple linear least-squares fit to the data.
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Unfortunately, the re-calibration procedure is restricted to a fairly small number of pulses

as it requires a cold period Te < 3keV with χ of similar magnitude to the hottest period. As

χ is approximately proportional to line integrated density, this requires part of the pulse to be

of similar density but much lower temperature to the main heating phase. This is uncommon

at JET where Te and ne typically both rise together before a single main heating phase after

which they fall together.

4.3.7. Finite Temperature Effect Conclusions

A comparison has been made between experimental measurements of induced ellipticity from

the core channel of the JET polarimeter and calculations based on the cold plasma approxi-

mation and including non-relativistic and also weakly relativistic finite Te effects to first order

in τ . To deal with difficulties with the instrument calibration, two methods were used. Firstly,

a statistical view of pulses with a good original calibration was given and secondly, a single

pulse was re-calibrated.

In both cases, it has been clearly shown that the measurements are in far better agreement

with the relativistic model. Under the assumption that the basic theory is correct (i.e the

cold plasma model is valid for cold plasmas), this verifies the presence of relativistic effects

in the propagation of high frequency radiation through high Te plasma. It demonstrates that

both non-relativistic and weakly relativistic finite Te effects must be taken into account when

considering ellipticity measurements of plasmas with Te ∼> 5keV .

While a more detailed model of the calibration would be required for a direct and complete

verification of the model’s validity, both methods give an approximate Te dependence relatively

close to the relativistic finite Te model’s prediction.
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Along with the magnetic field and electron density ne, one of the most important plasma

parameters is the electron temperature, Te. At the time this project begun, the two principal

diagnostics which gave information on Te were the Electron Cyclotron Emission and the Core

and Edge LIDAR Thomson Scattering systems. The two LIDAR systems have sufficiently

similar design that a single model could be developed for both systems and given that they

each also provide information on ne, they could be coupled with the Interferometry model

from chapter 3. For these reasons, it was decided to include the two LIDAR systems and this

chapter details the modelling and analysis of both.

The model of the physics involved, covered by section 5.1 has been developed previously and

is relatively simple to implement but the diagnostic system itself, is also highly complex. For

the inference of Te and ne to be accurate, and to extract the maximum possible information

from the data, it was necessary to model this complexity in extreme detail and to include all

the calibration parameters in the forward model. Sections 5.2 through 5.4 detail the full oper-

ation and existing calibration procedures of both diagnostics as determined from the original

documentation and discussions with the diagnostic operators. The remaining sections account

work carried out entirely by the author. Section 5.5 describes the development of the full

likelihood function and some approximations of it. Section 5.6 describes the work done to

determine and improve the accuracy of the calibration information and the effect it has on the

inference of ne and Te. Section 5.7 gives some typical results for JET H-mode plasmas and

shows the improvement gained over the standard analyses by using the full models. Finally,

section 5.8 attempts to use the new models to examine the shape and evolution of the H-mode

Te and ne pedestals.
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5.1. Thomson Scattering

The process of Thomson scattering (TS) is exploited in many plasma experiments to obtain

measurements of both ion and electron temperatures and densities. The measurements are

made by analysing the spectrum and intensity of light scattered from a high power monochro-

matic laser pulse sent through the plasma. On JET, three systems use the Thomson Scattering

principle: The Core[66] and Edge[67] LIDAR systems and the more recent High Resolution

Thomson Scattering[26] system. All three systems are employed for measuring ne and Te

profiles across different regions of the plasma.

The scattering of light by a charged particle can be viewed within quantum mechanics as the

collision of the particle and a photon. If the photon energy h̄ω is comparable to the rest mass

of the particle, the collision can change its momentum and the process is known as Compton

scattering. If the charged particle momentum is almost unaffected, the process is known as

Thomson scattering and can be viewed classically as the electron being accelerated by the

incident wave and emitting radiation as result. The lasers in both JET LIDAR systems have

a wavelength λl = 694nm, leading to photons with an energy of 2eV which, at six orders

of magnitude smaller than the rest mass of an electron, makes Thomson Scattering a valid

approximation.

The incident radiation will accelerate both ions and electrons but the small electron to ion

mass ratio ensures that the induced ion velocities are negligible and so only electron scattering

is usually detected. The Thomson scattering process is usually split into two cases depending

on how the wavelength of the incident light compares to the plasma’s Debye length λD. If the

incident wavelength is much longer λl >> λD, the shielding charge surrounding each electron

oscillates with opposite phase to that electron, cancelling out the radiation. While ions do

not themselves radiate significantly, scattering from their shielding electrons is detected in this

case, meaning the scattered light holds information about the ions. This is known as ’coherent

scattering’. If the incident wavelength is much shorter than the Debye length λl << λD, the

scattering from an electron’s shielding cloud does not cancel that electron’s radiation and so

information on the electron is detected, this is known as ’incoherent scattering’. For JET

plasmas, λD ≈ 10−4m, far longer than the laser wavelength and so incoherent scattering is

observed in both LIDAR systems.

The spectrum of incoherent scattering arises because of the Doppler effect. Each electron

re-radiates light in its rest frame at the incident frequency it sees in its rest frame. For an

electron travelling toward the laser, the electron sees a shorter wavelength (blue-shifted). The
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emitted radiation, as seen by an observer in the laser’s direction (and rest frame) is seen as

further blue-shifted due to electron’s velocity. If seen by an observer in the opposite direction

it will be red-shifted back toward the incident frequency. It is clear then, that the spectrum

observed will depend on the electron velocity distribution. For the vast majority of scenarios,

the tokamak plasma is in thermodynamic equilibrium making the distribution Maxwellian.

For temperatures above 1keV , which JET plasma usually are, the high velocity tail contains

electrons travelling at relativistic speeds and a relativistic treatment of the Doppler shift must

be used. The full derivation of this can be found elsewhere [68]. For temperatures of order

30keV, which are beyond JET’s operating range but will be present in ITER, the next large

tokamak to be built, the relativistic effects also include a significant change to the polarisation

and the scattering becomes difficult to calculate exactly. Fortunately, a sufficiently accurate

approximation is given elsewhere[69], suitable for 644nm TS systems and any plasma across the

full operating range of both JET and ITER. The formula is shown below for a fixed scattering

angle of 180o as both LIDAR systems detect almost entirely backscattered light. It gives the

approximated scattered power Ps per unit solid angle Ωs per unit normalised wavelength ε,

where λs is the scattered wavelength, λl is the laser wavelength, Pi is the total power incident

on the scattering volume containing ne electrons and re is the classical electron radius:

d2Ps
dΩsdε

= r2
enePi

e−2αq

2K2 (2α) (1 + ε)
3
√

4 (1 + ε) + ε2
(5.1)

q = 1− 4η
2 + η

2 + 13η
η =

1

2αx

x2 = 1 +
ε2

4 (1 + ε)
ε =

λs − λl
λl

2α =
mc2

Te

Figure 5.1 shows the Thomson scattering spectrum as calculated by equation 5.1 for a range

of temperatures typical of JET plasmas along with the spectral sensitivity profiles of each

channel of the Core and Edge LIDAR spectrometers. To determine the detected signal in each

channel, the number of photons scattered per second that are in the spectral range of that

channel must be calculated. With R(λs) as the spectral response function the channel, this is:

dNs
dt

=

∫
d2N

dt dλs
R(λs)dλs (5.2)

The power per unit wavelength in equation 5.1 can be converted via the photon energy
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Figure 5.1.: a) Thomson backscattering spectra dP/dλ from 694.3nm incident light at a range
of temperatures. b) Normalised detector spectral response profile R(λs) for the 6
Core LIDAR spectral channels and c) for the 4 Edge LIDAR spectral channels.

expression E = hc/λ to the total number of photons per unit wavelength per unit time:

dNs
dt

=

∫
λs
hc

d2P

dt dλs
R(λs)dλs (5.3)

The predicted count from one channel in a time period ∆t for a given ne and Te, assuming

the photons are emitted as a constant stream, is:

Ns (ne, Te) = ∆t

∫
λs
hc

d2P

dt dλs
R(λs)dλs (5.4)

Because the photons are emitted randomly, the count that would actually be observed must

be expressed as a probability distribution which is the likelihood function for this simple case.

This is the Poisson distribution, where M is the number of photons actually observed:
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P (M |Ns) =
NM
s e−Ns

M !
(5.5)

When the photon counts are significantly above around 30, this can be approximated as a

Gaussian distribution with σ =
√
Ns:

P (M |Ns) ≈
1√

2πNs
exp− (M −Ns)2

2Ns
= G

(
M ;Ns,

√
Ns

)
(5.6)

The usual analysis procedure, which is adopted by the JET standard analysis, is to fit

the prediction Ns to the detected photon count using this likelihood function. An important

assumption in this fitting procedure is that all of the light which contributes to a single reading

comes from plasma of the same ne and Te. Significant variation within the collection region

of either, e.g. sharp gradients, will result in a spectrum which is the sum of different spectra.

Temperature gradients particularly, can result in detected spectra which are not even consistent

with equation 5.1 for any single Te. In most Thomson scattering systems this assumption is

valid since the collection optics are each focused on a single small volume and each point

is measured by a different set of optics. The LIDAR systems, however, use a very different

approach.
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5.2. LIDAR

The JET Core and Edge LIDAR systems are based on the Light Detection and Ranging (LI-

DAR) principle. In each measurement frame, a 300ps laser pulse is sent through the plasma

and a single set of collection optics and detectors measure the light back-scattered along the

laser line. If the detectors and laser were in the same place, the position along the line of

sight from which a photon has scattered is determined by its time of flight z = c (tD − tL) /2

where tD is the time of arrival at the detectors and tL the time the laser pulse left the laser.

This simple situation is shown in figure 5.2a. The fitting procedure described previously can

be carried out for the light detected at a series of times, each giving the Te and ne at the

corresponding z. The complete result would be a profile of both variables along z. Because

each volume of plasma is only illuminated for the ∼ 300ps it takes the light pulse to pass

through it, the resulting profiles are an incredibly short ’snapshot’ of the plasma, compared to

conventional TS systems which typically integrate each region over at least a few 10ns. The

whole procedure is then performed throughout the plasma pulse, 140 times at 4Hz for the Core

LIDAR system at 6 times at 1Hz for Edge LIDAR system.

Figure 5.2.: Space-time diagrams for the LIDAR system showing a) a single photon leaving
the laser at tL, scattering at z and returning at tD and b) with an extra scattering
from a different position z′ that could be included with the first. The vertical axes
represents the distance along the beam-path on which the laser and detectors both
are positioned at z = 0.

In practice, the situation is complicated firstly by the finite width of the laser pulse. It

is possible that light arriving at the detectors at tD was actually scattered from light that

left the laser a short time ∆tL before or after the central laser firing time tL. The relative

intensity of light emitted by the laser at different ∆tL is given by its pulse shape L (∆tL). The

second complication is the finite time resolution of the detection system. It is possible that

the signal measured at tD actually came from light which arrived a short time ∆tD before

this. The relative sensitivity of the complete detection system is given by D (∆tD). Figure
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5.2b shows the general case for an arbitrary ∆tD and ∆tL where the scattering takes place at

z′ = c (tD − tL −∆tD + ∆tL) /2. The total number of photons collected at any tD is then the

integral of the scattered photons Ns (z′) from all such contributions, weighted by L (∆tL) and

D (∆tD) and is given in equation 5.7.

Nγ1 (tD|tL) =

∫ ∞
−∞

L (∆tL)

∫ ∞
−∞

D (∆tD)Ns

(
c
tD − tL + ∆tL −∆tD

2

)
d∆tD d∆tL (5.7)

This double integral is a convolution of Ns (z (t)) with both L and D and can be rewritten

as Ns ⊗ C where C is the combined system resolution function C = L⊗D. The width of the

function C determines the length along the line of sight of the volume from which the spectrum

detected at any instant is collected. It is this width which must be examined, for a LIDAR

TS system, to validate the assumption of constant ne and Te over the scattering volume. The

naive point-by-point Thomson spectrum fitting carried out by the standard analysis will have

an effective spatial resolution of this length.

For the JET Core LIDAR diagnostic, L is a Gaussian with FWHM ≈ 300ps and D is similar

to a Gaussian with FWHM ≈ 700ps. This gives a convolution function with FWHM ≈ 760ps

which means scattering is collected from a region of approximately 12cm. For the core of a

stable JET plasma with no transport barriers, MHD activity or similar, ne and Te will not vary

significantly over this scale. This is the regime for which the system was originally designed

and for which the standard fitting procedure is sufficient. However, when transport barriers

are present, especially at the edge, both ne and Te will simultaneously change rapidly over

as little as 2cm. It is clear that in this case the assumption is broken and the simple fitting

procedure does result in serious systematic errors for both profiles.

For the Edge LIDAR system, L and D have FWHM ≈ 300ps and 550ps giving C with

FWHM ≈ 630ps and a scattering volume of 9cm along its line of sight. Despite the fairly

shallow angle between the line of sight and the flux surfaces, the H-mode pedestal projected

onto the line of sight is still usually < 10cm and so proper consideration of the effective

convolution is essential when using Edge LIDAR data from H-Mode plasmas.
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5.3. Optics and Timing

Figure 5.3.: The Core LIDAR Thomson Scattering system optical setup showing scattering
from an arbitrary position along the system’s line of sight. The plasma, windows
and collection mirrors are to scale.

The layout of the input collection optics for the JET LIDAR systems are shown in figures

5.3 and 5.4. In both cases, the laser and spectrometer are situated in the roof laboratory 20m

above the vessel. For the Core LIDAR system, a series of mirrors direct the laser through the

central vessel window and across the plasma. The backscattered light passes through 6 window

tubes located around the input window and is delivered to the spectrometer in the roof lab by

means of the 2 large sets of collection mirrors and a small mirror near the laser input mirror,

all of which are not mounted on the Tokamak itself. The Edge LIDAR system is similar, but

has collection optics physically mounted on the vessel. The solid angle of collection is less for

smaller major radius R which leads to a reduced sensitivity toward the very inboard side of

the plasma. The very outboard edge also has reduced sensitivity due to details of the setup

of the collection optics and spectrometer. The amount of light collected by the detectors as a

function of R is known as the system’s vignetting curve. It is measured by filling the vessel with

a constant density of Nitrogen, firing the laser and measuring the Raman scattering[70]. This

scattering should be equal everywhere along the line of sight and so the measured intensity

variation should be this vignetting curve. The result of this calibration is shown in figure 5.5

for both systems.

The input and return path lengths are very different which means the simple relationship
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Figure 5.4.: The Edge LIDAR Thomson Scattering system optical setup showing scattering
from an arbitrary position along the system’s line of sight.

Figure 5.5.: The measured vignetting calibration curve (2006) for The Core LIDAR system
(blue) and the Edge LIDAR system (red). The curve describes the relative amount
of light collected from different radial position.

z = c(tD− tL)/2 cannot be used to determine the scattering positions. Instead, each system is

calibrated to its laser beam-dump, the position of which is better known. As the laser pulse hits

the beam dump a large reflection pulse is emitted back toward the collection optics. The time

this light arrives at the detector provides a reference point from which to draw the position

of the other detected scattering. Unfortunately, this ’back-wall pulse’ is orders of magnitude

greater than the Thomson scattered light for which the detectors are optimised and so they are

completely saturated by it. To resolve this problem, an approximately 40m loop of optic fibre

redirects a small portion of the laser light directly into the detectors. The length of the fibre is

sufficient for this ’timing pulse’ to arrive at the detectors shortly before light from the plasma

scattering arrives. In a separate calibration experiment, in which the detector gain is turned

down sufficiently to see the back-wall pulse clearly, the time difference between receiving the

105



5.3. OPTICS AND TIMING

timing and back-wall pulses is measured. In normal scattering measurements, the timing pulse

is used as the time point from which the position of the TS light is deduced. The procedure is

actually only valid for the first channel of each spectrometer since only that will see reflected

light. It is believed the other channels see light scattered from a small ablation plasma created

as the pulse hits the beam dump, which will be slightly delayed. To work around this problem,

the difference in path length between the other detectors and the first is also measured directly

with a ruler. For the Edge LIDAR system, the detectors are positioned so that they all have

exactly the same path length from the beam dump.

While all of these measurements theoretically allow the position to be deduced, the cali-

bration procedure is sufficiently complex for both systems that significant uncertainty in the

position of the profiles may be introduced. The calibration measurements are made at most

once every few months and any variation in these periods of the optics or detectors will not be

known (hence not modelled) and will introduce systematic errors that will not be accounted

for. It will later be shown that correctly modelling the LIDAR positioning and timing is vi-

tal to their correct analysis and that with the Bayesian integrated approach, none of these

calibrations are entirely necessary.
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5.4. Detectors

The LIDAR detector systems consists of a series of filters which reflect successively shorter

wavelength portions of the scattered spectrum into Micro-channel plate photomultiplier tubes

(PMTs). Each PMT has a photocathode, which converts a fraction of the incident photons

into electrons (known as photoelectrons). This fraction is known as its quantum efficiency

(QE). Each photoelectron is accelerated through a series of plates of increasingly high voltage.

The impact of any electron with each plate releases more electrons resulting in a large number

eventually reaching the PMT’s anode, from which a current pulse is generated. This pulse is

fed to an Analog to Digital Converter (ADC), where, after some electronic signal processing

the voltage level is converted to a digital number and stored. This digital value is the data

which is predicted by the forward function developed here. In order to do this, the model must

include the details of the optics, PMT and ADC behaviour for all channels of both systems.

In both the optics diagrams (figures 5.3 and 5.4), it can be seen that the laser pulse passes

through a vessel input window shortly before entering the plasma. Since the input windows are

not perfectly transparent, a small fraction of the pulse is reflected. Similarly to the beam-dump

reflection, this is much greater than the TS scattering and the large number of photo-electrons

created in the PMTs would saturate the detection until long after the timing pulse and TS

light from the plasma has arrived, meaning nothing could be measured. To avoid this, the

high-voltage supplies to the PMTs are not switched on until shortly before the timing pulse

arrives.

Unfortunately, switching on the HV supplies causes significant electronic oscillations to ap-

pear. These oscillations, while complex, appear in the data with the same shape and amplitude

for every frame on each channel regardless of the light arriving at the PMT and hence are known

as the baseline. Just before each JET plasma pulse, the detector system switches on the PMT

HV supplies and records one complete frame of data without the laser firing. These frames

show only the baseline signal and so that frame can be included in the forward function to

simulate the baseline on the real plasma frames.

When the laser is fired and/or there is a plasma in the vessel there is a second effect of the

HV switch-on. While the HV supply is off, both background plasma light and reflection from

mirrors and the input window incident on the photo-cathode still generate photoelectrons. As

these are not accelerated away they collect at the photo-cathode and when the switch-on occurs

are accelerated in one go, giving a single large pulse known as the switch-on pulse. Unlike the

baseline, the amplitude of this pulse is heavily dependent on the specific conditions at the time
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of the frame. After the switch-on pulse has subsided, the signal returns to the baseline level

but with an extra constant positive offset resulting from any background/ ambient light flux

received from the plasma. This level is constant because the significant background emission

from the plasma does not fluctuate significantly over the frame capture period.

Figure 5.6 shows the typical signal for a complete frame of the Core LIDAR system which

results from all these components. The Edge LIDAR system is very similar in construction

but has a significantly larger baseline and often negligible switch-on pulse. Figure 5.7 shows a

schematic diagram of the whole system together with the flow of the information through the

system and their notation which will be used in this document.

Figure 5.6.: A typical Core LIDAR signal from one detector for a single frame.

It can be seen from figure 5.7 that the overall signal intensity, while proportional to the elec-

tron density, depends heavily on many factors such as transmission of the windows, the optical

path and all of the PMT characteristics. Measuring these individually and even measuring

the complete absolute transmission is difficult. Instead, the relative sensitivity of each channel

Λch is determined by a calibration experiment and the overall transmission coefficient Λ∗ is

left as a free parameter. This means the absolute electron density cannot be determined by

these diagnostics. A third set of parameters ξch are given to the proportionality of the final

data D to primary photo-electron count Nγe− per ADC sampling period, on each channel.

These values depend on the high-voltage applied to the PMT anodes and are determined by

the diagnostic team during a separate calibration experiment.
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Figure 5.7.: A schematic representation of the equipment/processes of the LIDAR system.
Below them (blue) are shown the information flow through the system and above
(green) are shown the inputs and nuisance parameters that are used in the forward
function.
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5.5. The LIDAR Likelihood Distribution

5.5.1. Basic Foward Function

Construction of the complete forward model for the LIDAR system, to predict the data given

a complete set of physical and calibration parameters, follows figure 5.7. The exact procedure

is straight forward, though not trivial:

� Find ne and Te at series of distances x, along the line of sight.

� Calculate arrival time of each point’s information at the ADC t

� Calculate scattered photon count per incident photon count into each channel’s spectral

range, at each point Nγ1(t, ch).

� Multiply by relative and overall sensitivity ΛchΛ∗ to get photo electrons arriving at each

channel’s spectrometer from TS light.

� Add ambient light, switch-on pulse, timing pulse and stray-light contributions to get

total photo-electron count Nγe−(t, ch).

� Convolve with combined instrument function C and multiply by photo-electron factor to

get data contribution from light Dli(t, ch).

� Add data contributions from electronic background to give final predicted data Dpred.

For the LIDAR system, the largest source of uncertainty is that relating to whether or not

a photo-electron will be created when a photon hits the photo-cathode. Even given a constant

stream of photons arriving at regular intervals, the PDF of the number of photo-electrons

emitted in any period P (N0
γe− |µ) will follow the Poisson distribution about the mean number

over many such periods N0
γe− . Conceptually similar uncertainties also arise from other sources

like the probability of the Thomson scattering itself, or of electrons causing cascades in the

PMT but all of these involve much larger numbers than the primary photo electron count. As

this is the place in the system when the important information is held in the smallest discrete

number, it contributes the largest uncertainty. To calculate the likelihood function P (Dpred |µ)

requires performing the last four stages of the above to P (Nγe− |N0
γe−) rather than just to N0

γe−
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5.5.2. Effect of the convolution on the likelihood.

Even assuming the Gaussian approximation (equation 5.6), the propagation of this PDF

through the convolution with C 1 is especially complicated and three approximations were

developed as part of this work. In the discussion of these that follows, the mean number of

photoelectrons N0
γe− will be referred to simply as N, and the number actually observed Nγe−

as M. The vector nature represents the fact that each count is over one ADC sampling period

and the resulting vector relates directly to the vector of data observed over one frame.

The ’Simple’ Approximation

If both the laser and detector were ideal (delta functions) and the ADC response a top-hat

function of exactly 1 period width, there would be no convolution and the light contribution to

each data point would come from counting photo-electrons only during that exact ADC period.

Each data point would be entirely independent and the full likelihood distribution simply the

product of the likelihood for each data point (equation 5.8).

P (M |N) ∝
n∏
i=1

G
(
Mi; Ni,

√
Ni

)
(5.8)

It is a likelihood function of this form that is effectively assumed in the standard analysis

of LIDAR at JET and the approximation causes the inference of features much smoother and

broader than in reality.

The ’Convolved’ Approximation

To include the convolution, it is tempting to convolve the expected counts Ñ = N⊗C and apply

the Poisson likelihood to the result, ignoring the effect of the convolution on the distribution

itself:

P (M |N) ∝
n∏
i=1

G
(
Mi; Ñi,

√
Ñi

)
(5.9)

This leads to a dramatic over estimation of the uncertainty. To understand why, consider a

vector of constant A that is convolved with a normalised convolution function C. The result

is the same constant level:

B = A⊗ C = A (5.10)

1Technically, the convolution with the laser pulse function L(t) should be applied before the appearance of
the PDF as only the detector and ADC convolutions really happen after the source of uncertainty. Since
only the complete function C = L⊗D has been determined experimentally and D makes up the larger part
of it for both systems, this is ignored in this work. This will not effect the likelihood mean at all and will
cause only a very small underestimation of its width and overestimation of the expected correlation.
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However, if some Gaussian noise of constant level σA is added to the original signal, the

noise level on B is not σA. Rewriting the convolution as a sum, the effect on the standard

deviation of the Gaussian noise can be found easily by Gaussian error propagation:

Bi =

n∑
j=0

CjAi−j (5.11)

σ2
B =

n∑
j=0

C2
j σ

2
A = σ2

A

n∑
j=0

C2
j (5.12)

The reduction in variance η, for an arbitrary instrument function C or for a Gaussian of

width σC is:

η2 =
σ2
B

σ2
A

=

n∑
j=0

C2
j =

1

2σC
√
π

(5.13)

The result B, is simply a smoothed copy of A and the longer the convolving function, the

smoother the signal. Applying this correction to the likelihood function of equation 5.9 results

in equation 5.14.

P (M|N) ∝
n∏
i=1

G
(
Mi; Ñi, η

√
Ñi

)
(5.14)

This approach is used as a simplification later for ease of computation. While it takes into

account the effect of the convolution on the magnitude of each point, it does not account for

the large correlations introduced into neighbouring data points, which is not reflected in this

PDF. An alternative way of viewing the flaw in this reasoning is that it is really M, the realised

counts, that is convolved and not N, the expected counts.

The full ’Correlated’ calculation

The effect of the correlations can be included by describing the distributions with a single

multivariate Gaussian with each dimension representing the count within one ADC period. In

this formalism, the approximated Poisson distribution (which is uncorrelated) for all counts is

written as:

P (Mi |Ni) = G
(
Mi; Ni,

√
Ni

)
(5.15)

P (M |N) = G
(
M; N, σ

)
(5.16)

With σij =
√
Ni for i = j and 0 for i 6= j, or σ = diag(N). The convolution is really performed

on the vector of the counts actually obtained M and can be written as a matrix operation:
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M̃ = M⊗ C (5.17)

M̃i =

m∑
j=0

CjM(i−j) =

i∑
k=i−m

C(i−k)Mk (5.18)

M̃ = C M (5.19)

The convolution matrix is then Cik = Ci−k. The desired likelihood distribution is P
(

M̃ |N
)

which can be obtained by transformation of the Gaussian in equation 5.16 by C. The new

Gaussian has mean C N and covariance C σ CT :

P
(

M̃ |N
)

= G
(

M̃; C N, C [diag(N)] CT
)

(5.20)

This gives the probability of obtaining any vector of counts M̃ after the detector’s convolv-

ing effect, given the expected vector of counts N. The principal difference between this and

equation 5.14 is that this PDF assigns a low likelihood to data that has changes faster than the

convolution width and larger than the electronic noise. Drawing samples from equation 5.14

will produce data with excessive high frequency noise. For inversion of real data, neither the

data or the mean prediction can ever have such changes since both come from the convolution

of a noisy signal, with only electronic noise added afterwards. Almost no set of parameters can

produce a prediction (C N) which involves evaluating the likelihood where the approximation

and full calculation differ significantly. Some inversions were performed using both models and

gave little difference in the resulting posterior PDFs. Given this, and the fact that equation

5.14 is significantly less computationally expensive, the convolved approximation is used for

the results in the following sections.

5.5.3. Electronic Baseline and Noise

The only uncertainty which is comparable to that due to the uncertain number of photo-

electrons is the electronic noise picked up between the PMT and ADC - σelec in Data/ADC

units. Since the ADC convolution is not much more than 1 ADC point, this can be treated a

simple uncorrelated Gaussian likelihood and be added to each PDF. Included this, converting

from photo-electrons to full ADC units via ξ and adding the electronic baseline level Abl, the

three models are:
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P (D |N)
simp ∝

n∏
i=1

G
(
Di; ξNi +Abl,

√
ξ2Ni + σ2

elec

)
(5.21)

P (D |N)
conv ∝

n∏
i=1

G
(
Di; ξÑi +Abl,

√
ξ2η2Ñi + σ2

elec

)
(5.22)

P (D |N)
corr ∝ G

(
D; ξÑ +Abl, ξ

2C [diag(N)] CT + σ2
elec 1

)
(5.23)

The electronic noise σelec is determined by taking the sample standard deviation of the signal

before switch-on, with the baseline shape subtracted.

5.5.4. Stray Light

The real data for both systems also has some contribution from unknown reflections of the

laser pulse. These each have the shape of the instrument function C and appear at approxi-

mately consistent times in each frame. Unfortunately, some of these stray light peaks appear

on top of the TS scattering light which has very significant effect on the infered profiles in

the standard analysis, especially for the Edge LIDAR system. The peaks have a largely un-

predictable amplitude making them very difficult to remove by pre-processing the data and so

they are modelled by adding copies of C to the post-convolution mean predicted signal Ñ with

positions and amplitude given by an extra set of nuisance parameters. A statistical survey of

the appearance of the pulses was performed on Dry-run data (where no TS light is present)

and used to construct priors for the positions and amplitudes on both systems.

5.5.5. The Complete Model

Figure 5.8 shows the real data and full convolved likelihood model (equation 5.22) for two

channels of the core and one of the edge LIDAR system at the MAP of an arbitrary inversion.

The separate components of the model are highlighted to show that many of them are absolutely

essential for the inversion to isolate the information in the TS signal. Table 5.1 gives a list of the

nuisance parameters that are required to describe the model. The signal building parameters

are assigned relatively weak priors and are inferred almost entirely from the data in each frame.

The calibration parameters are expected to remain reasonably constant over pulses and frames

and so should be assigned prior PDFs according to separate calibration experiments.
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Parameter Description
Signal building parameters: (All per channel)
xbl, ybl Baseline positioning.
xtp, Atp Timing pulse position and amplitude.
xso, Aso Switch-on pulse position and amplitude.
Nam, xam Ambient light level amplitude and start position.
xbw, lbw Back wall pulse position and length scale.
xsl, Asl, wSl Stray light positions, amplitudes and widths.
Calibration parameters:
Λ Combined transmission factor.
Λch Relative sensitivity (per channel).
S (λ) Normalised channel sensitivity spectrum.
ξ Photoelectrons per bin to ADC unit factor (per channel).
∆tbwtp Timing pulse to backwall time difference (per channel).
zbw Back wall beam dump physical position along line of sight.
V (z) Vignetting curve.

Table 5.1.: Nuisance Parameters involved in the full forward model.
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Figure 5.8.: Data (blue) and full forward model (red) for two channels of the Core LIDAR
system and one from the Edge LIDAR system.
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5.6. Calibrations

The LIDAR systems have an unusually large number of calibration parameters which each effect

the inference of the results in different, sometimes subtle, ways. In the standard analysis, all of

these are assigned fixed values determined from instrument specification or separate calibration

experiments. While these values are accurate enough for that purpose, it was found that the

detail of inference desired here required much greater accuracy and knowledge of uncertainty

than was available. Without any ability to work with the physical equipment, a series of

methods were developed to extract accurate calibration information from the vast amount of

dry-run and plasma data available.

5.6.1. Instrument Functions

The convolution function C is of great importance in the analysis of both LIDAR systems. If

ignored, rapid changes in the density and temperature profiles like the H-mode pedestal are

not correctly inferred. The major effect on the density gradient is approximately as if the real

ne profile were itself convolved with C. The effect on Te is more complicated as the inferred

Te at a point is biased towards the Te of higher density plasma within the scattering volume.

Figure 5.9 shows the posterior of an inversion using the simple approximation (equation 5.21)

which ignores the convolution, on noise-less simulated core LIDAR data generated using the

full convolved model (equation 5.22). Whether or not the sharp changes can be inferred is not

important here, and the inferred MAP does not need to coincide with the original profile, but

the original parameter set should be within the posterior mass (and the profile within ±2σ in

figure 5.9). It is clear that when not including the convolution effect, this is not the case.

Figure 5.9.: Effect of ignoring the instrument function of the core LIDAR system. Posterior
distribution without convolution in the likelihood model, based on simulated data
using the full convolved forward model.

Since the standard analysis ignores the convolution, so has no need for the instrument

function, an accurate record of C was not available. Fortunately, the timing pulse in the data

frames should be similar to the instrument function, since it is created by feeding a small part of
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the laser pulse directly into the PMTs via an optic fibre. The dispersion of the fibre is assumed

to be small enough not to modify the shape significantly. For a single frame of core LIDAR

data, the timing pulse is covered by only around 10 ADC points and is too noisy to be of any

direct use, so a procedure was developed to extract it from 130 frames of 40 dry-run pulses.

Dry-run pulses were used to ensure that ambient and TS plasma light do not contaminate it.

For each frame, the timing pulse can scale in amplitude and translate in time within a known

range and for the edge LIDAR system, where the laser pulse length is less stable, it may also

change width. The translation is beneficial since each frame gives a glimpse of the shape at

slightly different positions. Using so many frames means the common shape can be found to

much higher resolution (20ps / 3mm for core LIDAR) than the ADC sample rate (200ps /

3cm). The procedure is effectively a very large fit, using a linear interpolation of a single series

of knots to describe the shape and 3 parameters for each frame describing the scaling in both

time and amplitude and the translation in time of the common shape onto that frame. The

shape model had ∼ 40 knots, spaced with approximately 4 per ADC data point. The best fit

was found by iterating between the genetic algorithm and conjugate gradient searches. Figure

5.10 shows the results, which are used as the instrument function C throughout this work.

Also shown is the only data initially available - a photocopy of an old photo of an oscilloscope

screen from when the core LIDAR PMTs were installed in the 1980s.
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Figure 5.10.: Determination of LIDAR instrument functions using fit of common shape to the
timing pulse in 130 frames of 40 dry-run pulses: a) final shape of core LIDAR
timing pulses. b & c) common shape and two data frames for core LIDAR, d)
Only existing information - a photo of an oscilloscope trace for core LIDAR and
e) final Edge LIDAR timing pulse.
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5.6.2. Photo-electron factors (ξch)

For each channel, the final ADC signal follows D = ξchΛ∗ΛchNγ1. The photo-electron factors

ξch used in the standard analysis are calculated from the quantum efficiency and HV gain of the

PMTs given in their original specifications. A large inaccuracy in these would not strongly effect

the standard analysis because the relative sensitivities Λch (see later) are actually determined

from an experiment that measures the ratios of the product ξchΛch between different channels,

from which the assumed values of ξch are divided out. However, the likelihood distribution

variance follows σ2
D ∼ (η2ξ2Λ∗ΛchNγ1 + σ2

e) and so the correct values of ξch are essential for

the Bayesian analysis to correctly treat the uncertainties and to know the relative amount of

trust to put in the data from each channel.

An indication that the original values were inaccurate for the core LIDAR system, and grossly

incorrect for the edge LIDAR system was quickly observed by the much larger fluctuations

observed in the data than predicted by the original ξs. This also highlights a way to determine

these directly from the data itself. For real plasma frames, there are small regions in-between

the switch-on pulse, timing pulse and TS light that show only the constant ambient light level

(see figure 5.11a). The amplitude of this varies from frame to frame and is unknown in each,

but the relationship of the variance with the amplitude is determined only by ξ, η and σe:

σ2
D ∼ η2ξD + σ2

e (5.24)

For 800,000 frames of 6000 pulses for core LIDAR and 17,000 frames of 3000 pulses for edge

LIDAR, the sample mean x = 〈D〉 and standard deviation y =
〈
(D − 〈D〉)2

〉
of each of the

ambient light windows were calculated. This forms a data set from which ξ can be determined,

given that η is known from section 5.6.1.

A simple linear least squares fit is not sufficient because the presence of small stray light

spikes in many of the frames causes distant outliers in the data. Assuming a fixed Gaussian

likelihood distribution for P (y |x) is also invalid because y is a sample standard deviation of the

data D and so also has an uncertainty that scales with the amplitude. A linear least-squares

fit also assumes a uniform prior which is not ideal because the parameter being inferred ξ, is a

variance-like quantity. The likelihood distribution required is given in [71] and is in the second

term of equation 5.25. The multiplier of this and the first term express the finite possibility

Poutlier of the point being an out-lier, in which case a uniform distribution represents that,

once deemed an out-lier, a point is equally likely to be anywhere in a wide range y0 − y1. The

’forward function’ of this fit is then just equation 5.24.
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P (y | σD) = Poutlier

[
1

(y1 − y0)

]
+ (1− Poutlier)

[
y−(n+1)exp

(
−(n− 1)σ2

D

2y2

)]
(5.25)

Figure 5.11 shows the ambient light regions for both systems, the data set (x, y), a kernel

density plot of y for bands of x along with the prediction σD(D) and its expected 2σ standard

deviation at the maximum posterior value of ξ, for one channel of the core and one channel of

the edge LIDAR systems.
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Figure 5.11.: Bayesian inference of photo-electron factors ξ from dependence of ambient light
variance on amplitude. a) Regions of constant ambient level above baseline and

data from some typical frames. b,c,d) Histograms in y =
〈

(D − 〈D〉)2
〉

for bands

across x = 〈D〉 showing distribution of data in (x, y). b,c,d also show mean and
spread of the likelihood (LHD - the expected distribution of y) at the MAP (best
fit) and mean at the original specification values of ξ.

The procedure works well for almost all channels of both systems, with the non-outlier points

in (x, y) following the second term of equation 5.25 almost exactly. The ambient light levels
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System Channel Convolution Original ξ Bayesian P (ξ | x, y)
compensation (η2)

Core 1 0.121 1.18 3.63 ± 0.17
2 0.139 1.71 3.41 ± 0.02
3 0.122 2.59 4.20 ± 0.05
4 0.144 1.81 2.20 ± 0.02
5 0.127 2.94 5.31 ± 0.04
6 0.110 1.56 3.67 ± 0.02

Edge 1 0.044 56.2 1260 ± 35
2 (74313 ≤ pulse ≤ 78787) 0.044 44.6 770 ± 20
2 (78788 ≤ pulse ≤ 79840) 0.044 27.0 505 ± 40
3 0.044 25.2 690 ± 20
4 0.044 58.0 555 ± 20

Table 5.2.: Photo-electron factors (gains) in ADCU per photo-electron per ADCU determined
from specifications (original) and by Bayesian inference from ambient light variance.

on channel 1 of the core LIDAR system (bottom-right of figure 5.11) are effected strongly by

the discrete levels of the ADC (1 unit) and by the fact that the ambient light regions are

very small for channel 1 and the contamination by stray light very large. Table 5.2 shows the

inferred values of ξ compared to the originals for both system. The reason for the discrepancies,

which are well over an order of magnitude on the edge LIDAR system are not understood. It is

possible that the model for the PMTs and/or ADCs is not quite correct but this will not matter

now since the model with the inferred values of ξ now accurately describe the real noise levels,

regardless of the reason why. It is clear that this procedure was necessary for both systems,

especially the edge LIDAR system, for the Bayesian inference of ne and Te to properly account

for the photo-electron noise.

5.6.3. Absolute Sensitivities (Λ∗)

The absolute sensitivity Λ∗ is not measured for either of the LIDAR systems. For the standard

analysis it is determined by a statistical comparison of interferometry data with the equivalent

prediction using the standard analysis LIDAR ne profile and fixed EFITJ flux surfaces. These

inferred values for Λ∗ can be used as priors here but it is usually better to apply a uniform prior

and include the interferometry likelihood in the posterior so that the most consistent value for

both LIDAR systems is found for the time point of interest, using the magnetic topology model

of the inversion being performed.

5.6.4. Core LIDAR Relative Sensitivities (Λch)

The LIDAR system relative sensitivities Λch principally effect the inference of the absolute Te

and are determined from separate calibration experiments by measuring ξchΛch of each channel
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relative to the others. For the core LIDAR system, it is believed that the calibration values

are accurate since the Te results of the standard analysis have always matched those of the

independently calibrated ECE diagnostic reasonably well.

Some supporting evidence can be seen from the ambient light data of section 5.6.2. Since

the spectral ranges of the core LIDAR channels are fairly wide, it is reasonable to suspect

that the majority of the ambient light might come from Bremsstrahlung emission since any

line emission is usually very narrow and even if large in amplitude will not give a large overall

power/intensity. The Bremsstrahlung emission photon count N(λ) approximately follows 1/λ

over the LIDAR spectrometer range so the ratio of the ambient light levels between two channels

should be:

〈Di〉
〈Dj〉

=
ξiΛi

∫
λ−1Si(λ)dλ

ξjΛj
∫
λ−1Sj(λ)dλ

(5.26)

A major line emission that might have a large effect is the Dα line, the intensity of which

can be found from the visible spectroscopy diagnostic. Figure 5.12 shows 〈Di〉 vs 〈Dj〉 for each

combination of channels coloured by Dα emission intensity from visible spectroscopy. Channel

1 is not included as the ambient levels are too low to be useful for this exercise. The expected

ratio according to the calibration values of Λch are shown and sit in many cases approximately

along the bulk of the data points. The Dα emission line sits inside channel 2’s spectral range

(see figure 5.1) and can only give a positive contribution to 〈D2〉. The first four plots of 5.12

involve channel 2, and show that the points are higher in 〈D2〉 than the expected ratio by an

amount that clearly depends on the Dα emission. Due to this, it is difficult to tell if Λ2 is

accurate. The remaining plots suggest that Λ3, Λ5 and Λ6 are all very accurate but that there

might be a small inaccuracy in Λ4.

This investigation was carried out here only to determine the level of confidence in the

calibration Λch values. Based on this and the general agreement of core LIDAR with ECE,

a very narrow prior can be used or they can be fixed at their calibration values since the

uncertainty is unlikely to contribute a major part of the uncertainty in ne and Te. There is

also a great deal of scope for further investigation of the technique. With a proper spectroscopic

survey and/or using more detailed data from the visible spectroscopy any other spectroscopic

diagnostics it might be possible to automatically calibrate LIDAR systems using this technique

alone. A major advantage is that it includes the full optical path of the diagnostic as it is used,

which is not true for the calibration experiment at JET because part the collection windows

(see figure 5.3) must be removed to gain access to the vessel. It also would then be relatively

easy to develop a system which automatically adapts to any changes in the collection optics
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Figure 5.12.: Ratios of average ambient light intensity for channels 2-6 of core LIDAR (small
coloured lines) compared to anticipated ratios using calibration values of channel
relative sensitivities Λch and assuming N(λ) ∝ 1/λ spectrum (broken lines).
Points are coloured by Dα line emission intensity, which sits within channel 2’s
spectral range.

without requiring access to any of the hardware - a particularly useful feature for ITER and

reactor devices where the high particle fluxes will degrade the optics over time and the high

radiation levels will make manipulation of in-vessel hardware difficult.

5.6.5. Edge LIDAR Relative Sensitivities (Λch)

Unlike with the core LIDAR system, the agreement between the standard analysis of edge

LIDAR and the other Te diagnostics is relatively poor despite the use of exactly the same

calibration procedure for both LIDAR systems. The large uncertainty in the positional cal-

ibration of edge LIDAR, along with difficulties in relating it to the other diagnostics due to

the uncertainty in the flux surfaces (and assumptions of constancy of Te/ne on them) makes it

difficult to quantify this or to be sure that inaccurate Λchs are the cause. In fact, the common

interpretation so far, has been that the temperatures are correct and that the edge LIDAR line

of sight penetrates less deeply into the plasma than the EFITJ flux surfaces suggest, giving

the temperatures at the pedestal base. The full integrated approach shows that it is almost
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certain that the relative sensitivities Λch for the edge LIDAR system are significantly incorrect

(by a factor ≈ 2.3). Using the standard analysis techniques, this had not been seen and it

would be very difficult to correctly handle it at the same time as the other calibration and

noise uncertainties.

The ambient light ratios procedure used for the core LIDAR system is unlikely to be appli-

cable to the edge LIDAR system because the optics view the edge and divertor regions where

the plasma is cold and contribution from spectral lines above the Bremsstrahlung is likely to

be large. Figure 5.13 shows the ambient light data that is observed and the expected ratios

if the spectrum were still approximately N(λ) ∝ 1/λ, for the original calibration and for the

widest possible range of values that give temperatures consistent with the core LIDAR (these

are found later, in section 5.7.3).

Figure 5.13.: Ratios of average ambient light intensity for all 4 channels of edge LIDAR
(coloured lines) compared to anticipated ratios using calibration values of channel
relative sensitivities Λch and assuming 1/λ spectrum for N(λ) (green solid lines).
Also shown is the expected ratios from the widest range of possible Λch values
obtained in section 5.7.3 (pink band).
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While it does not seem to be consistent with the possible relative sensitivities and the simple

uniform spectrum assumption, there is a strong correlation in the observed ambient levels of

the different channels despite the very wide range of plasmas (fuelling, Ip, Bt, ne, Te etc).

This suggests that a proper study of the visible spectrum in edge LIDARs viewing area and

modelling of the expected ratios of integrated intensity in each channel could yield an accurate

calibration. Without this, and having cast significant doubt on the original calibration values,

the relative sensitivities Λch are initially assumed almost completely unknown and P (Λch)

assigned a uniform or very wide prior. In section 5.7.3, more accurate values for Λch are found

from posteriors of full inversions including the core LIDAR likelihood.

5.6.6. Timings and position calibrations

Various timing and position parameters are present in the model. Each system has a global

timing parameter across all channels which effects the position of the inferred ne and Te profiles

along the system’s line of sight. If assigned a uniform prior, the global timing is usually easily

inferred from the data because the core system sees both the inboard and outboard sides of the

plasma. The parametrisation of the profiles as constant on flux surfaces results in an effective

automatic centering on the consistent solution. The edge LIDAR system is then effectively

aligned to this.

A set of parameters are used to describe the difference in timing between the channels and

these can have a small effect on the shape of both the Te and ne profiles. For core LIDAR,

the typical gradual monotonic increase then decrease in Te across the core plasma makes them

easy to infer even if assigned a uniform prior. The conceptually simplified explanation is that

the signal must rise across the channels in order then fall in the opposite order.

The same is not true of the edge LIDAR system, where Te along the line of sight rises to

near its maximum and does not fall much before the signal is lost beneath the back-wall light.

Uncertainty in the timing differences would have a large effect on the Te pedestal gradients and

widths inferred. By design, there should be no timing difference because, unlike core LIDAR,

a single common-trigger ADC is used and the system is designed so that all optical paths

and cables are the same length. The edge LIDAR channel to channel timing differences are

therefore assumed to be zero for this work. Individual large stray-light peaks that occasionally

appear in multiple channels also support this, since they are rarely located more than 1 data

point apart in different channels. This suggests the inter-channel timing misalignment is at

most 7.5mm (1 ADC period).

125



5.7. INVERSION

5.7. Inversion

5.7.1. Free shape, free calibration inference

With all of the nuisance and calibration parameters assigned appropriate priors and the desired

model for ne(R,Z) and Te(R,Z) connected, inversions can be performed with both LIDAR

systems and the interferometry. The complete combination can be used for time points at

which the data is captured sufficiently close together that the magnetic geometry, ne, and Te

will not have changed significantly, so that all three systems are looking at approximately the

same plasma. The main limitation is the 6 time points at 1s intervals of edge LIDAR, since

core LIDAR will usually have a time point within 5ms of these and the interferometry within

1ms.

With so many of the calibration and nuisance parameters assigned weak priors, the posterior

is very broad (i.e there is large uncertainty) when the LIDAR signal levels are low. For

high density and hence high TS light level plasmas, there is sufficient information to infer

ne and Te reasonably accurately despite the lack of calibration information. Initially, fixed

EFITJ flux surfaces are used and figure 5.14 shows the marginal profiles of the posterior

P (ne, Te, µcalibs | Dinterf , D
core
LIDAR, D

edge
LIDAR, j

EFITJ
φ ), for an H-mode plasma shortly before

a Type-I ELM. The ne and Te profiles are parameterised with the linear-interpolation of 50

knots with greater concentration at the edge. The profile priors assigned are second-differential

smoothing priors relatively strong in the core and weak in the edge region.

For this fairly recent pulse, the High Resolution Thomson Scattering (HRTS) system is

available and is shown in figure 5.14 for comparison, as the HRTS data is not used in the

inversion in any way. The results of the standard analysis of the same data on which the

inversion is performed are also shown. It is immediately clear that a far more accurate result

is obtained than by analysing each diagnostic independently.

The overall magnitude of the density differs slightly to the standard analysis of core LIDAR

due to the inclusion of the interferometry diagnostic’s accurate integral information. The

pedestal region shows the most improvement, where the combined analysis agrees very well

with the HRTS when the standard results show little resemblance. The core LIDAR stand-alone

results show no Te pedestal at all and only a small slow drop in ne, which is due to the effective

12cm resolution that comes from the convolution effect which the standard analysis ignores.

It seems logical to assume that the pedestal information must be derived almost entirely from

the edge LIDAR data but the core LIDAR also provides some critical parts of the information.

Edge LIDAR does not provide the absolute magnitude of either ne or Te because of the lack
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Figure 5.14.: Profile marginals (colour banding) of posterior

P (ne, Te, µcalibs | Dinterf , D
core
LIDAR, D

edge
LIDAR, j

EFITJ
φ ). Inference of free-

form ne and Te profiles from combination of interferometry, core LIDAR and
edge LIDAR based on fixed flux surfaces from EFITJ. Also shown are the
standard analysis of Dcore

LIDAR and Dedge
LIDAR and of the HRTS diagnostic. The

plasma is a particularly high-density but otherwise typical Type-I ELMy H-mode
with each diagnostic data sampled within 1ms of each other, ∼ 10ms before an
ELM.

of knowledge of the spectrometer sensitivity parameters Λ∗ and Λch, although it does provide

accurate information about their shape. While the core LIDAR system cannot see the pedestal

shape, it effectively provides something similar to the integral of Te in the last 12cm. From both

pieces of information the full Te profile is inferred, along with an estimate of the edge LIDAR

Λch values. The situation for ne is slightly more complex, since core LIDAR also has uncertain

Λ∗ and cannot know the ne magnitude. It does however couple the edge ne 12cm integral to the

core profile, which gets some shape information from core LIDAR and magnitude information

from the interferometry. In a similar way, all of the timing and positional parameters which

were assumed unknown and assigned weak priors are also inferred by self-consistency.

While it is an interesting exercise to think about from where the information is effectively

coming, the power of the Bayesian analysis of the combined system is that none of this needs
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to be even considered. The profiles are obtained by carefully expressing what is known a-priori

and then asking what it implies mathematically can be known about ne and Te. In many cases,

especially some with low signal to noise, it is surprising how much information is really present

in the data, when the standard analysis produces results that many scientists consider too

noisy and inaccurate to even consider working with. The inferred profiles usually match the

HRTS results better than can be achieved by arbitrarily shifting and scaling the stand-alone

analysis profiles to agree, a method that is often used to resolve the inconsistencies, but rarely

carefully justified.

Flux surface uncertainties

Because the fixed EFITJ flux surfaces are used, the ne profile in figure 5.14 shows similar

artifacts in the core as those seen in the EFITJ based interferometry-only ne inversions in

section 4.1.2. To account for the flux surface uncertainties, the current tomography model

can be used for jφ in the combined inversion, together with the CAR prior. The posterior is

then P (ne, Te, jφ, µcalibs | Dmags, Dinterf , D
core
LIDAR, D

edge
LIDAR), which is shown in figure 5.15.

The inversion uses the same parameters and priors so, apart from including the flux surface

uncertainty, it is identical to that used to obtain figure 5.14.

As expected, the uncertainty is now much larger showing that the uncertainty in the flux

surfaces makes a large contribution to that in the profiles. The ne pedestal position is particu-

larly uncertain, although the shape does not vary significantly (seen in the individual samples

shown for the edge region). The Te pedestal does show that a range of shapes are possible.

Some show a sharp transition between the core gradient and the ETB while others have a

slowly increasing gradient. This variation in shape is seen for many pulses, in both Rmag or

ψN space. It comes from the fact that the flux surface uncertainty given only the magnetic

measurements is sufficiently large, that a wide range of pedestal shapes can be made to match

the shape of the edge LIDAR data by appropriate manipulation of the flux surfaces along its

line of sight. Figure 5.16 shows the flux surfaces from the full posterior compared to those

of the fixed EFITJ solution. The large differences between the absolute values of ψN are not

important, since the profiles are all positioned by self consistency and are not in any way tied

to the LCFS. The shape is however important, since the assumption of constancy of ne and Te

on the flux surfaces requires the edge LIDAR data of the inboard edge, to match that of the

outboard. Consistency of this assumption with the data requires the plasma to be narrower

just above the X-point than in the EFITJ solution.

As with the polarimetry investigations, the choice must be made between the large but
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Figure 5.15.: Profile marginals (colour banding) of posterior

P (ne, Te, jφ, µcalibs | Dmags, Dinterf , D
core
LIDAR, D

edge
LIDAR). Inference of

full free-form ne and Te profiles from combination of magnetics coils, interfer-
ometry, core LIDAR and edge LIDAR including uncertainty due to flux surface
uncertainty. Also shown are the standard analysis of Dcore

LIDAR and Dedge
LIDAR and

of the HRTS diagnostic and several individual samples of the posterior (red).

Figure 5.16.: Flux surfaces from samples (solid) of posterior

P (ne, Te, jφ, µcalibs | Dmags, Dinterf , D
core
LIDAR, D

edge
LIDAR) compared to

EFITJ solution (dashed) and edge LIDAR line of sight.
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quantified uncertainty of the combined inversion or the systematic uncertainty in the EFITJ

surfaces that is smaller but cannot be accounted for. This recurring problem is revisited in

chapter 6 but for the remainder of this chapter, the EFITJ flux surfaces are used due to the

practical issue of inversion speed. The large collection of very different calibration parameters

and their interplay makes the core/edge LIDAR combinations produce very non-linear, multi-

modal and extremely complex posteriors. The combination of this with the high dimensionality

of jφ takes an impractically long time to explore for repeated use.

5.7.2. Pedestal Parameterisations

For low density and hence high noise pulses/time-points, the pedestal shape inferred becomes

very uncertain. It is usually still possible to extract broader information about the pedestals

by using a stronger parameterisation with fewer degrees of freedom. Particular quantities of

interest are the pedestal height (ne,ped, Te,ped), width (∆) and hence gradient, and pedestal

centre position (ψN0 = ψN at half the pedestal height). A common choice used to parameterise

the pedestal is the modified hyperbolic tangent (mtanh)[72]. This was proposed as a model

for ne, based on the assumption that the formation of the ne pedestal is largely due to the

high charged particle source rate at the edge, due to the neutral density falling rapidly inside

of the separatrix [73]. This is itself supported by the presence of the ne pedestal in L-mode

when the ETB does not exist (see for example, the interferometry inversion in section 4.1.3,

figure 4.3). The inferred shapes for ne in figures 5.14 and 5.15 also support this. For Te, where

the pedestal is formed by the suppression of transport in the ETB, it is not clear that fitting

a mtanh function is justified.

Figure 5.17 shows a schematic of the two parameterisations and some ne profile samples

of an mtanh parameterised inversion for a lower density plasma. The low signal level can

be seen to dramatically effect the core LIDAR standard analysis where as with the strong

parameterisation, the Bayesian inversion is able to recover the profile well.

5.7.3. Inference of calibration parameters

Whether using a free-form profile or the mtanh/linear pedestal parameterisations, each pos-

terior also contains the inferred calibration parameters. For example, the marginal posterior

P (Λch |Dmags, Dinterf , DLIDARs) gives the range of possible sets of values for the edge LIDAR

relative sensitivities that are at all consistent with all the diagnostic data, parameterisations,

priors and flux surface constancy. Figure 5.18 shows the relative sensitivity ratio Λ3/Λ2 at the

130



5.7. INVERSION

3.70 3.75 3.80 3.85
0.0

1.0

2.0

3.0

4.0

3.653.603.553.503.45

Pedestal
Height
(ne,ped /
  Te,ped )

Pedestal
Width (Δ)

Centre Position (ψN0)

Core Profile Knots

n
e
 /

 T
e

ψN

Modified Hyperbolic 
Tangent (mtanh)

Linear Pedestal

n
e
 /

 1
01

9
 m

-3a) b)

Figure 5.17.: a) Schematic of modified hyperbolic tangent (mtanh) and linear pedestal pa-
rameterisations, coupled to the normal linear-interpolated knots for the core. b)
Samples for ne of an inversion using the mtanh parameterisation on a plasma
that gives low TS signal levels.

MAP estimate of P (ne, Te, µcalibs | Dinterf , DLIDARs, j
EFIT
φ ) for 1500 time-points over several

campaigns using the linear-pedestal parameterisation. For a few of these, the 2σ width of the

full posteriors using fixed (EFITJ) or free (CT) flux surfaces are shown to give an idea of the

expected spread (The non-linear exploration is too computationally expensive to be performed

for every point).

For comparison, figure 5.19 shows MAP estimates of

P (Λch, µcalibs | Dedge
LIDAR, n

HRTS
e , THRTSe , jEFITφ ) - the ratios Λ3/Λ2 required to agree with

the HRTS standard analysis ne/Te profiles. These are only shown to give support to the

ratios inferred from the combined analysis because, while they appear cleaner, they cannot be

used since the HRTS has not been thoroughly modelled and the effect of its own calibration

uncertainties have not been investigated here. For the pulses shown, the JET HRTS system

was itself cross-calibrated from the ECE diagnostic [74].

If it is assumed that the relative optical sensitivity of the equipment will not change rapidly

between pulses or time-points, the uncertainties can be reduced by taking the moving average

of the MAP estimates. These are shown in figure 5.18/5.19 along with the ±2σ spread of the

MAPs. From this, a slow drift can be seen in Λ3/Λ2, which is probably due to deterioration

of the diagnostic optics over the campaign.

For future inversions, the priors for the edge LIDAR Λchs can be assigned distributions

covering the range of values seen in figure 5.18a which will improve the inference of the pedestal

Te. It is also possible to use these values in the standard analysis which brings the Te magnitude

in agreement with the other diagnostics. Strictly, this prior can only be used on inversions of

data that was not included in acquiring the prior but the information will be sufficiently diluted

by other pulses to make little difference to the result.
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5.8. Pedestal Evolution

With the calibration values inferred, the combined inversion benefits from the very high spatial

resolution information that the edge LIDAR system can give, for plasmas with a reasonably

high TS light level (high density and high incident laser intensity). Such plasmas allow the

inference of very accurate information about the H-mode pedestal. For a single time point,

this is more accurate and has a higher resolution than even the new HRTS system, which gives

at most around 10 points in the pedestal region, usually many less. Studies of the pedestal

dynamics have previously been conducted at JET using the HRTS diagnostic [75] by averaging

profiles over many time points and in some cases [76] moving the plasma by a few cm, in order

to capture the required resolution. This averaging was done over many time points in different

parts of the shot, at roughly the same position in the inter-ELM cycle, under the assumption

that the plasma will have the same ne and Te profiles, at a given point in every ELM cycle.

The edge LIDAR system provides a much lower noise and higher resolution snapshot of the

pedestal at each time point, but unfortunately, it only records data at 6 time points separated

by 1s intervals in each pulse. These fall effectively randomly within the ELM cycle.

In order to examine the inter-ELM evolution, 6 pulses were found that have a high electron

density, high edge LIDAR laser intensity and almost identical global plasma configuration. The

global parameters over the main heating phase of the pulses are given in table 5.3.

Pulses 78596 - 78601
Plasma Current Ip 1.7 MA
Vacuum Toroidal Field Bt 2.4 T
Core ne, Te ≈ 8× 1019m−3, 5keV
Heating Power 13MW NBI, 1MW ICRH, < 1MA Ohmic. (for 8s)
Inter-ELM period ≈ 200ms

Table 5.3.: Main parameters for series of pulses analysed.

The pulses which fit the requirements were part of the ELM pellet pacing experiments[77],

where small frozen deuterium pellets are fired into the plasma edge at high frequency, with

the intention of deliberately triggering ELMs. Given this intention, it is likely that the pellets

will effect the pedestal immediately after injection. However, in these plasmas, the pellets are

injected at 20Hz and consist of a very small amount of fuel, compared to the high density of

the plasma. The fraction of these that successfully reach the plasma is also low, with almost

none triggering ELMs for most of the pulses. No lasting effect of the pellets is seen on the high-

speed interferometry measurements[78]. It is therefore unlikely that at a randomly selected

time (e.g an edge LIDAR time point), the plasma will be significantly different to an identical

pulse without pellet injection.
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5.8.1. Inversion details and MAP results

To analyse the pedestal shape, the full free-form profile inversion of section 5.7.1 was performed

on the 28 time points in the main heating phase of the pulses. Second differential smoothing

priors were assigned for both profiles with stronger smoothing in the region covered only by

core LIDAR and weaker in region covered by edge LIDAR. The strengths were selected to

be just strong enough to suppress extreme local noise in both systems, without reducing the

inferred gradients significantly. Table 5.4 gives the smoothing strength σ, and the gradient

below which it will be easily overridden by the data (2σ). Figure 5.20 shows the MAP results

for all time points, coloured according to the time between the preceding ELM and the time

point of the inversion ∆t. There remains some stray-light contributions for which a satisfactory

model was not developed, which contaminates the inferred profiles at ψN ≈ 1.03, RMag ≈ 3.85

so this part of all of the profiles is shown with reduced intensity.

Profile ne Te
Core σd2f/dψ2

N
1021m−3 50keV

Edge σd2f/dψ2
N

1022m−3 500keV

Max gradient (core) 1019m−3 per cm 1keV per cm
Max gradient (edge) 2× 1020m−3 per cm 8keV per cm

Table 5.4.: Second differential smoothing priors used for pedestal evolution inversions.

5.8.2. Early ELM-cycle profiles

The effect of the ELM-crash is immediately evident from the early profiles (blue) of figure 5.20.

The height of the temperature pedestal drops and the earliest profile (∆t = 3ms, shown as a

broken line) shows a return almost to the linear, L-mode like shape for Te. The corresponding

density profile also shows a significantly reduced gradient, but with the density reducing for

ψN < 0.97 and increasing for ψN > 0.97, unlike Te, in which all parts of the profiles are at

lower Te after the ELM. This was also seen in the HRTS investigation [75], which showed a

clear pivoting of the density pedestal gradient around the pedestal centre (defined as the point

where ne ≈ 1
2ne,ped, at ψN ≈ 0.97 in this case). The MAP profiles here do not disagree with

this but only the 1st profile (∆t = 3ms) and the 4th (∆t = 9ms), show a significantly different

profile shape and height to the rest, suggesting that the density profile returns rapidly (by

∆t ≈ 10ms at the latest) to its pre-ELM form. The Te pedestal rises more slowly, reaching a

height and shape similar to the late cycle profiles after ∆t ≈ 40ms, as can be seen from figure

5.21, which shows the Te pedestal profiles in ψN grouped into sets of 5.
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Figure 5.20.: MAP ne (top) and Te (bottom) profiles for 28 edge LIDAR time points in 6
similar pulses, coloured by fraction of time point through ELM cycle, with blue
earlier and red later. Parts of profile with low intensity are polluted by unmodelled
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5.8.3. Pedestal position

An interesting feature of figures 5.20 and 5.21 is that the Te pedestal is stationary in ψN , while

it appears to have no fixed position in Rmag. The inversion assigns no importance to any

particular value of ψN and the profile positions are inferred entirely from the data and flux

surface consistency, so it is unlikely that this is an artifact of the inversion set-up. Considering

the inferred pedestal position in real space in terms of Rmag, could be unecessarily introducing

further errors from the EFITJ flux surfaces. The lowest noise data, and hence strongest

constraint on the inferred profiles, comes from the outboard pedestal on the edge LIDAR

line of sight, some distance from the outboard midplane. It is more useful to directly asses

the pedestal position as a coordinate along the edge LIDAR line of sight. To examine the

variations of the pedestal position in both flux and real space in more detail, figure 5.22 shows

the position of the EFITJ ψN = 0.91 (arbitrary selection) contour along the edge LIDAR line

of sight in black triangles for each of the 28 time points, against ∆t. A 10 point moving average

is also plotted for this and for intervals of 0.01 in ψN , which shows the general trend of the

separatrix moving outwards as the plasma pressure grows over the ELM cycle. The real space

positions along the line of sight, of ne = 3.0 × 1019m−3 and Te = 400eV are also plotted,

to show the movement of the pedestals. These values of ne and Te are approximately half of

the average pedestal height, adjusted to ensure a good estimate of the pedestal position for

as many of the profiles as possible. For most of the ELM cycle (∆t > 30ms), the Te pedestal

position can been seen to moves outwards, following the movement of the separatrix, while the

density pedestal shows no clear trend, possibly remaining fixed to a real space position.
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5.8.4. Shapes and marking

It is clear from figure 5.20 that most of the density profiles can be represented by the modified

tanh profile discussed earlier. The Te profiles however, can not be represented by this form.

Early in the ELM cycle, they can be very flat, showing no clear pedestal beyond the noise.

Late in the ELM cycle (panels 5 and 6 of figure 5.21), the Te profile has a slow transition from

the gradient at mid-minor radius (ψN ≈ 0.8) into a steep, constant gradient in the last 1-2 cm.

This pedestal gradient is maintained down to less than 100eV and beyond the minimum Te

at which edge LIDAR can observe TS light. Inversions using both the mtanh and the linear

pedestal models were attempted for these pulses but the edge LIDAR data at the top of the

pedestal is sufficiently strong that it dominates the improperly fitting model, giving a much

wider pedestal than is seen in the free-form profile inversions. In general, these fits were too

strongly effected by noise and stray light.

To quickly quantify the pedestals without a well fitting model, the top and foot of the pedestal

in each of the free-form profiles was marked by hand. To reduce unintentional biasing, this

was done in an entirely random order, with both the x and y axes obscured (no scales). In

many cases, the profiles did not exhibit a clear enough pedestal shape to mark, so the range

in ψN which might be considered the top of the pedestal was marked instead of a fixed point.

Figure 5.23 shows the marks for an ne profile and for both clear (mid-cycle) and unclear (late)

Te profiles.
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in profiles for a) a typical ne pedestal b) a relatively clear Te pedestal and c) a
unclear and difficult to characterise Te pedestal.
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The heights, widths and gradients from all 28 time points are shown in figure 5.24, plotted

against (and coloured by) time after the preceding ELM and with error bars calculated from

the marked ranges. Linear fits are shown for ∆t > 50ms for all plots and for ∆t < 50ms for

plots involving Te (right).

Figure 5.24.: Evolution of ne (left) and Te (right) pedestal parameters over ELM cycle from
marking of 28 edge LIDAR time points in 6 similar pulses (see table 5.3). 1st

row: Pedestal height, 2nd row: Pedestal width in magnetic mid-plane real space
(RMag), 3rd row: Pedestal gradient (RMag). The last row gives the ne pedestal
gradient in ψN space, in which it was marked, and the mapping gradients dψN/dR
(from EFITJ). Points are plotted against and coloured by time from preecding
ELM (∆t). Linear fits (black) and uncertainty (grey, as samples) are shown for
∆t > 50ms for all plots and for ∆t < 50ms for plots involving Te.

5.8.5. Width and gradient evolution

The difficulty in defining the pedestal leads to an uncertainty that is quite large, especially for

late cycle Te width and gradient, but some trends can still be seen. The variation beyond those

trends is greater than the uncertainty, which suggests there are some significant differences

between the plasma at the same stage in different ELM cycles, as these profiles came from
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5.8. PEDESTAL EVOLUTION

different cycles and different pulses.

Despite these considerations, it is possible to see some of the features discussed earlier and

a few more beyond those. The Te pedestal height rises rapidly and reaches close to its late

ELM cycle values after only 40ms while the density pedestal reaches 4− 6× 1019m−3 almost

immediately. There is a subtle trend of slowly increasing density and temperature after 50ms

and although this could easily be an artifact of the cycle and pulse variations, it is supported

by the high temporal resolution ECE and interferometry.

The early (20− 50ms) data, seems to indicate that the Te gradient returns to its pre-ELM

value very rapidly, and that the width and height increase together, rapidly before 50ms and

slowly, if at all, after that. The density pedestals, being much clearer for most of the cycle,

have a smaller uncertainty for all but the very early (∆t < 15ms) time points. Again, a

possible slow increase over the rest of the cycle might be present, but with the gradient more

or less constant. Most of figure 5.24 shows the Rmag variation of the profiles which can be

different to that in normalised flux as the plasma moves through the ELM cycle. The effect is

not as strong as discussed earlier for the position, since here it is only effected by differences

between the flux compression at the outboard midplane and on the line of sight. The outboard

midplane mapping gradient dψN/dR is plotted in the bottom-right graph and shows a gradual

increase throughout the ELM cycle, as the plasma β increases, increasing the Shafranov shift

and compressing the outboard flux surfaces. However, this is a change of only around 20% and

so the variation of width and gradient is not clearly different in ψN beyond the uncertainty.

However, from the linear fit, there is a suggestion that dne/dψN falls as dψN/dR increases,

retaining the same dne/dR.

5.8.6. Conclusions and scope for future investigation.

This investigation was limited in scope and performed on a small number of pulses (6) for a

single plasma configuration. The trends seen are on the very limits of the diagnostic resolution

and are comparable with the variation of the plasma between ELMs, so the conclusions drawn

are not presented as proven results. For this, the work must be extended to consider a larger

data set. However, this study does serve to demonstrate the capability of the inversion to

extract very accurate individual pedestal profiles from the edge LIDAR system, which is not

possible with the ELM-cycle averaging of profiles performed elsewhere. The edge LIDAR data

suggests that the modified tanh profile is not a perfect model for the Te pedestal. With more

high signal to noise shots like those analysed here, it might be possible to construct a better

ad-hoc parameterisation, which could then be used with the remainder of the data (over 16000
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time points with 7800 in type-I ELMy H-mode), to study the pedestal width, height and

gradient variations, both within the ELM cycle and between different plasmas. This work has

also indicated that two seperate aspects of the density pedestal (position and gradient) might

have a clearer behaviour in real space, than in the magnetic geometry. A similar effect has

been seen on MAST [79] where, in a double-null configuration (upper and lower X-point), the

inboard and outboard density profiles have a consistent shape in Rmag, but the temperature

profiles have a consistent shape in ψN . This does also indicate that the assumption of constant

ne on flux surfaces may not be valid. This should be investigated, and while it would be

relatively trivial to exchange the plasma model to include variations within a surface, how

much could be inferred with such flexibility is not immediately clear. As was shown in section

5.7, the effect of the flux surfaces on the shape (and hence width and gradient etc) inferred is

quite strong, so the inversions here should also be performed with the full Current Tomography

model, allowing the flux surfaces uncertainties to also be included.
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6.1. The Equilibrium Prior

6.1.1. Current Tomography versus equilibrium solutions.

It was explained in section 1.3 that external magnetic coils alone provide insufficient boundary

conditions to solve the equilibrium equation without making assumptions about the form of

the current and pressure distributions. It was shown experimentally in section 4 that the so-

lution found this way can be sufficiently inaccurate to complicate and confuse the analysis of

diagnostics. Alternatively, combining those diagnostics with the magnetics model and perform-

ing a single inversion (Current Tomography) provides a rigorous way to allow for and reduce

flux surface uncertainty without assuming equilibrium but, as was shown in section 4.2.3, the

uncertainty found this way, without adding further diagnostics, is often larger than the error

in the equilibrium solution. The choice is between an inaccurate estimate with an uncertainty

which includes the reality and a more accurate (but still critically incorrect) answer with no

uncertainty.

Since we do expect that the real plasma is at least close to equilibrium, what is really desired

is the PDF of all plasmas which are consistent with the data and are close to equilibrium solu-

tions. The fact that the equilibrium cannot be solved outright with only magnetic diagnostic

data does indicate that the profile smoothing priors etc, that are chosen will have a great effect

but, unlike the fixed solution, adding more diagnostic data will always override these assump-

tions if the priors are sufficiently weak. Previously, a PDF of a range of possible equilibria

consistent with various measurements has been found using Bayesian methods for a Stellerator

[37]. This was done by interpolating a set of equilibria previously calculated by a traditional

solver, restricting the PDF to plasmas which follow the assumptions made by that solver.

The objective here, is a PDF of every possible plasma which will also describe what really can

be inferred about the plasma equilibrium from just magnetic diagnostics, which is a strongly

debated topic.

6.1.2. The simple Grad-Shafranov difference prior

Including the assumption of equilibrium in the full CT model is conceptually simple. A

parametrisation for the equilibrium pressure p(ψN ) and poloidal current flux f(ψN ) is added

to the model and the difference δGS between the toroidal current density jφ and the right

hand side of the isotropic pressure flow-free Grad-Shafranov (GS) equation 1.15 calculated at

a series of points throughout the (R,Z) plane. A prior PDF P (jφ, p, f) over this difference is

included in the posterior. It can have arbitrary shape but must be centred at 0 difference and
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is usually chosen as a simple Gaussian:

δGS(R,Z) = jφ(R,Z) −Rp′(ψN ) − µ0

R
f(ψN )f ′(ψN ) [ ψN = ψN (R,Z) ](6.1)

P (jφ, p
′, ff ′) =

n∏
i=0

m∏
j=0

G
(
δGS(Ri, Zj); 0, σequi

)
(6.2)

The equilibrium pressure function p may be related ne, Te, Ti etc via other prior assumptions

at a later stage.

If the likelihood function of only the magnetic diagnostics P (Dm|jφ) is included, the posterior

PDF P (jφ, p
′, ff ′ |Dm) will now include all plasmas consistent with the magnetic coils that

are equilibrium solutions or are close to one. The uncertainty represented by this posterior

includes the uncertainty due to the uncertain magnetic measurements but also that due to the

degeneracy in the GS equation.

6.1.3. Beam average and net force priors

As with all prior PDFs (and the corresponding assumptions in frequentist methods), there are

some arbitrary choices in this specification which introduce complications. The parametrisation

of jφ by uniform beams is actually incompatible with equilibrium since the beams will each

relate to small overlapping intervals of p and ff ′ in ψN space. For the GS equation to be

exact, p′ and ff ′ must be uniform over each interval and because they overlap, must be

uniform everywhere. The prior assumption of small GS difference over multiple points on each

beam inherently implies prior belief that p′ and ff ′ are flat. Many parametrisations (e.g. linear

or cubic 2D interpolations, delaunay triangulation interpolation etc) were tried but each has

similar issues. The simplest (and computationally least intensive) solution is to require only

that the average of Rp′ + (µ0/R)ff ′ over each beam must be close to jφ:

δbi = jφ(Ri, Zi) −
1

Ai

∫∫
Ai

Rp′(ψN ) +
µ0

R
f(ψN )f ′(ψN ) dRdZ (6.3)

P (jφ, p
′, ff ′) =

N.beams∏
i=0

G
(
δbi ; 0, σequi

) [
Ai = ithbeam area

]
(6.4)

This constraint is similar to requiring that the net force on each beam is small - without

assumption about compression or expansion forces inside each beam. It differs from this only by

the factor ∇ψ/R that is present in equation 1.14. This term gives a different relative weighting

between different regions of the plasma, a distinction which is another arbitrary choice of the
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prior assumption.

6.1.4. Scrape off layer and private regions

The situation outside the LCFS is more complex as each surface is connected to the first wall

and it can not be assumed that areas of the same ψN are connected. However, to maintain

a practical parametrisation this is ignored and both p′ and ff ′ remain functions of ψN for

ψN > 1. For private regions (usually between X-point and divertor) which have ψN < 1 but

are outside the LCFS, the flux is reflected through the Separatrix ψN −→ (2− ψN ) to require

that they have similar current to the SOL. The assumption that both p and ff ′ are small for

ψN > 1.05 is then added as a Gaussian prior PDF. This allows current at the LCFS, Separatrix

and a small way into the SOL but discourages large currents far out from the plasma edge,

which are not expected. This in turn requires jφ to be small in these areas through the GS

prior. These assumptions are based on general observations of the SOL currents at JET[80] and

on other tokamaks[81] which show j‖ of at most 1% of the bulk plasma current. Measurements

of electron and ion temperature and density do not generally show large pressure gradients in

the SOL which directly supports the prior assumption of small p′ (and hence small j⊥).

6.1.5. Full Posterior

The full posterior, which is explored in the remaining sections of this chapter is:

P (jφ, p
′, ff ′ | Dmags) = P (Dmags | jφ) · P (jφ, p, f) · P (p′) · P (ff ′) · P (jφ) (6.5)

The likelihood distribution P (Dmags | jφ) is the multivariate Gaussian of the magnetic diag-

nostics data around the prediction from the Current Tomography model[38]. The second term

is the beam averaged equilibrium prior of equation 6.4, with σequi = 50kAm−2, chosen as ∼ 1%

of the typical average plasma current density. The profile priors, P (p′) and P (ff ′) can be used

to apply weak regularisation, if desired, and are discussed separately in each section. Finally,

the beam current density prior P (jφ) can now be assigned a uniform prior. The CAR prior

used in the earlier current tomography based work is now not required, as the combination

of the equilibrium and profile priors are sufficiently constraining to make the posterior finite,

although still very broad in some directions.
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6.2. Simulations I - Simple near-circular limited plasmas.

To demonstrate the method where an approximate equilibrium solution is known to exist, and

to investigate the problem without the presence of noise of the magnetic measurements, this

section gives posteriors inverted from simulated magnetic data. It also numerically confirms

some of the known theoretical results regarding what can be recovered. The simulated data is

based loosely on a real JET pulse and time point to maintain a realistic plasma shape, total

current and total pressure.

6.2.1. Circular low-beta EFITJ reconstructions

In this case, jφ is taken from the standard EFITJ solution for a limited L-mode low-beta

plasma with relatively circular shape. The forward model is used to predict noiseless magnetic

measurements and an inversion is then performed on the simulated data to attempt to recover

the original jφ, p′ and ff ′. Figure 6.1 shows the original profiles and profile marginals of

the posterior and figure 6.2a shows the associated flux surfaces. For both the simulation and

reconstruction p′ and ff ′ are assigned profiles of 6 knots fixed at values of ψN that result in

roughly equal spacing in R(Z = Zmag) and jφ is parameterised with a 30x30 set of current

beams. The normal (realistic) uncertainties are used for the magnetic measurement likelihood

distribution and the profile and current density priors, P (p′), P (ff ′) and P (jφ) are all assigned

uniform priors. The posterior was explored using the LGI bootstrapped adaptive proposal

Metropolis Hastings method covered in section 2.4.5.
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Figure 6.1.: Posterior PDF inferring equilibrium from simulated signals for JET magnetic
diagnostics. a) toroidal current jφ, b) pressure p, c) poloidal current flux f

The clearest result is that the whole equilibrium is more uncertain towards the centre of the

plasma which is an expected result since the plasma is almost circular. In the limit of infinite

aspect ratio (a completely cylindrical plasma) the external magnetics sensors alone would be

unable to distinguish between current rings at different radii. The second striking result is

that p is very uncertain, especially compared to f . This can be understood by recalling that
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only poloidal magnetic measurements are used here and they provide direct information only

about jφ. p′ and ff ′ are given information only by their coupling to jφ via the GS equation.

In this low-beta plasma, the magnitude of the Rp′ term in GS equation is much less than that

of jφ and ff ′/R. A small fractional uncertainty in jφ implies an uncertainty on the two terms

which is a large fraction of p′ but a small fraction of ff ′.

Although it cannot be clearly seen in the profile marginal plots, the large uncertainties come

principally from the possibility of oscillations in various quantities which have a small effect on

the magnetic measurements and therefore cannot be excluded as possible solutions. To demon-

strate this, figure 6.2 compares the flux surface uncertainties from this inversion with another

using measurement uncertainty 100 times smaller. The edge surfaces show much smaller un-

certainty in the latter case, showing that it comes mainly from the measurement uncertainty.

The uncertainty in central flux surfaces comes instead from the problem degeneracy and so is

not effected by the change in measurement uncertainty.

Figure 6.2.: Contours of normalised flux in several posterior samples from inversion of simu-
lated magnetics data with a) full and b) 1% of normal uncertainties.

6.2.2. Determination of moments βθ, µ and lI

As outlined in section 1.3, there are quantities which can be related directly to loop integrals

of the poloidal magnetic field around the plasma boundary. Two of these are the Shafranov

integrals which relate to the useful quantities βθ, µ and lI as s1 ∼ 3βθ−µ+lI and s2 ∼ βθ+µ+lI

[15]. Since the loop integrals relate almost directly to the edge measurements, the uncertainties
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on s1 and s2 are tied closely to the measurement uncertainty. If these are accurate, all possible

equilibria within any remaining uncertainty should follow the relationships:

µ ∼ βθ + c1, lI ∼ −2βθ + c2, lI ∼ −2µ+ c3

What else can be be known about βθ, µ and lI within this, depends on the higher order

moments of the magnetic information and so in general will be less accurate then the above

relationship, especially for more circular plasmas.

Figure 6.3 shows the correlation between the three quantities in the simulation posteriors

using the full (blue) and 1% (red) magnetic measurement uncertainties. In both cases, it is

clear that greater part of the uncertainty is through this partial degeneracy, as the scatter is

greater along the directions given by the above relationships (green). However it shows that

βθ, µ and lI can still be determined individually, albeit with large uncertainties.
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Figure 6.3.: Normalised moments βθ, µ and lI for samples of the posterior using normal
(blue) and 100 times reduced (red) measurement uncertainty. Black diamonds
show values for the original simulated equilibrium and the green lines show the
gradients of the expected theoretical degeneracy for the entirely cylindrical case.

The recovery of this theoretically anticipated partial degeneracy shows that posterior explo-

ration is being completed correctly and demonstrates the power of this method to represent

the full range of equilibria consistent with the magnetic measurements.
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6.3. Simulations II - High resolution reconstruction.

What can be inferred about jφ, p′ and ff ′ beyond the global low-order moments is strongly

debated. Analytical calculations show little can be inferred for cylindrical and possibly near

circular cases while numerical work often shows that at least a few higher order moments can

be found accurately in elongated plasmas. Some of the previous literature [16] effectively dis-

misses the numerical work, stating that the p′ and ff ′ profiles can never be inferred beyond

integrals of them. There is some conceptual confusion here since, while it is absolutely true

that only integrals can ever be known, it is not a speciality of the GS equation or the magnetic

measurements. It is never possible to completely determine spatial profiles from a finite number

of real measurements when the measurements are integral in nature, which is almost always

true. There is no discrete difference between the inference of electron temperature from Thom-

son scatting spectrometers that collect light over 5mm and one from magnetic measurements

integrating current over the whole plasma. There are no ’point measurements’ in reality and

so it is always possible to find many perturbations, usually oscillation like, which cannot be

detected. Without the prior assumption that these are not present, the answer to the question

of what can be inferred about the quantity at a single point is simple - nothing.

In summary, exactly what can be inferred from magnetic measurements remains unproven

and the Bayesian methods provide a way to, in principle, extract and represent this for each

case. Profiles are used for a parametrisation simply as a basis on which to work and it is what

is assumed and what can be inferred about them, the PDFs, that is of interest.

To investigate, a simulated plasma was created from the EFITJ solution for an existing

JET diverted H-Mode plasma with some arbitrary local deformations forced into p′. The

nearest equilibrium is found and the magnetic coil predictions taken as simulated data Dm. To

represent the local features, 15-knot profiles are used for p′ and ff ′ and 4.5cm width current

beams used for jφ.

The simulated data are inverted to find P (jφ, p′, ff ′ | Dm) using 30-knot p′/ff ′ profiles

to match the real situation in which the scale lengths of the features are not known. jφ

retains the 1510 4.5cm beams as in the original profile. Initially, the profiles priors P (p′)

and P (ff ′) are assigned weak first differential smoothing with σd(p′)/dψN = 1010Am−3 and

σd(ff ′)/dψN = 1010µ−1
0 Am−1
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6.3.1. The Iterative Linear Scheme

Unfortunately, the 1510 current beams required to adequately describe the complex geometry

of jφ causes the posterior dimensionality to be so high that the full non-linear optimisation

and exploration methods are extremely time consuming and difficult to use. Even running in

parallel over 100 modern machines, the Genetic Algorithm can take up to a few days to reach

a satisfactory MAP estimate and it is the fastest of the stable non-linear algorithms tried so

far.

With the pure current tomography, the priors were entirely linear and this problem was

avoided by using the LGI. The addition of the GS prior breaks the linearity. However, if the

functions p′ and ff ′ are used directly and parametrised by a simple interpolation of knots, then

δ is linear in those parameters at fixed jφ. jφ itself appears linearly in the first term but also

enters δ through ψN introducing a non-linearity which is only strong if p′ and ff ′ have large

gradients. In practice, the posterior is locally well enough approximated as linear, that the LGI

gives a good estimate of the direction of higher posterior probability. The following iterative

procedure uses this to gain a good estimate of the global MAP after only a few minutes:

1. Obtain jφ from standard Current Tomography LGI with CAR prior or from the standard

EFITJ solution).

2. Remove the CAR prior and add the GS prior.

3. Calculate linear coefficients at present position and find estimated MAP using the LGI.

4. Search in the direction of the new estimate from the current position for the highest true

posterior.

5. Move to the position with the highest real posterior.

6. Repeat from 3.

It is necessary to assign a Gaussian for the beam current density prior P (jφ), in order for the

LGI to be used. An uncorrelated Gaussian, centred at 0 with σjφ = 1010Am−2 is used so that

typically, σjφ > 103jφ. This is sufficiently weak that it does not strongly effect the posterior.

After many iterations, the approximate MAP will remain stationary and a (at least local)

maximum in the true posterior has been found. The procedure is mathematically similar to

that employed by many equilibrium solvers but because each stage only moves to higher values

of the true posterior, the procedure can not diverge. The result is always a higher posterior
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probability, close to equilibrium and matching the data Dm well, even if it is not physically

sensible in other ways.

While this method eventually converges on the MAP, the covariance obtained by the LGI

does not give a good estimation of the posterior shape and size. Investigation of the uncertainty

should be carried out by non-linear sampling methods but again, the high dimensionality makes

such exploration extremely difficult. Much time and effort was expended in the investigation

and development of the Metropolis Hastings, nested sampling[41] and a few other exploration

methods but a practically usable algorithm was never found. The best results were achieved

using 100 parallel Metropolis Hastings chains, each individually scaling a proposal covariance

periodically derived from all the global samples but even this only began to explore solutions

far from the initial MAP after several days. The exploration was incomplete so the results are

not presented here but the work does suggest that representative samples could be achieved

within a workable length of time with further development of the algorithm and/or more

computational power, giving full rigorous determination of all possible high-resolution equilibria

from experimental data.

6.3.2. Exploration by prior variation

Abandoning rigour temporarily, it is possible to gain some insight into what profiles are possible

by using the iterative LGI procedure with a range of priors on p′ and ff ′. If these profile priors

are kept relatively weak, the MAP estimates are always solutions close to both equilibrium and

the data. The profile priors only fill in the information not provided with confidence by the

data and so varying them gives an idea of the uncertainty present, albeit a qualitative one.

Figure 6.4 shows the original profiles and the iterative LGI MAP estimates using first or

second differential smoothing priors (equations 4.1 and 4.2) with a range of strengths on the

knots of p′ and ff ′. A smoothing prior is not required for jφ, since it is indirectly regularised

by those on p′ and ff ′ via the equilibrium prior.
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The reconstruction is often qualitatively reasonable, showing always the general shape and

in many cases the local features but it is clear the profile priors do have a strong effect. The

weaker priors allow large amplitude oscillations while strong priors flatten some of the features.

Despite this variation, the magnetics predictions never stray outside 0.1σ of the simulated data

and δb is always close to 0 showing good proximity to equilibrium. The unsurprising conclusion

is that even fairly accurate magnetic data is insufficient to completely reconstruct every detail

of the original profiles.

The variation in jφ at the plasma core is much larger than at the edge implying the edge is

better diagnosed. This matches that seen in the properly explored uncertainties of section 6.2.

In contrast to those results, p′ appears better diagnosed than ff ′ though this is consistent since

the plasma is much less ferromagnetic here. The µ0ff
′/R term is much smaller in magnitude

than Rp′ so a large local uncertainty in jφ gives a larger uncertainty in ff ′ than in p′.

One feature that is always present is the initial rise in the profiles at the plasma edge. The

magnitude of jφ at R = 3.7m and R = 2.1m varies by less than 20% around its target value

and although this relates to a ∼ 40% local uncertainty in p′ and even larger still in ff ′, the

feature is always present in all three profiles indicating that the data holds enough information

to be certain of its presence and relatively confident of its amplitude in jφ and p′.

6.3.3. Inference of Pedestal Current

While rigorous uncertainties must await further development of the sampling methods (or more

powerful computers), these result are encouraging. The amplitude of the current at the edge

of the plasma is of great interest in the study of the H-Mode pedestal as the pressure gradient

∇p and/or field parallel current j‖ are thought to play a role in the triggering of ELMs[82].

Of the ion and electron components of p, pe is reasonably well diagnosed (e.g. from chapter

5) but the ion pressures are harder to determine. Bulk and impurity ion temperatures Ti can

be measured by the Charge Exchange Recombination Spectroscopy (CXRS) diagnostic, which

observes emission due to interaction of those ions with the neutral beam particles. The ion

and impurity densities are the more difficult part and typically involve measurement of the

effective charge Zeff and assumptions of the impurity species present. Measurement of j‖

has attracted a lot of experimental effort recently including measures of Motional Stark Effect

(MSE) [83], also from the main heating neutral beams, or the Zeeman Effect on independently

injected Lithium[84]. Such measurements often suffer poor signal to noise, insufficient temporal

resolution to observe in-between ELMs or sensitivity to other unknowns like the electric field.

A new method, with very high resolution, is currently being developed at MAST [85]. It
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should be noted that none of these measure j directly but instead measure the magnetic field

components or the ratio Bθ/Bφ (i.e the pitch angle) and use an equilibrium solver and/or

simple assumptions to calculate the current. In every case, the determination of the j is a

complex inference problem.

Given the results of figure 6.4 it is unlikely that the magnetics data alone will ever be used to

examine the fine structure of the pedestal current, or even whether or not other structures exist

further into the plasma but it may be possible to infer the parallel or perpendicular currents or

something about the relationship between them, especially if prior information about the shape

is included. As a simple investigation, a series of equilibria were generated that were similar to

figure 6.4 but with 5 different values of p′ and 5 of ff ′ in the edge peak. From the predicted

magnetics data of each, the LGI MAP estimate was found using a simple parametrisation for

p′ and ff ′ of only 3 knots and a small Gaussian peak at the edge of each profile. Given the

strong parameterisation, the priors P (p′) and P (ff ′) can be uniform, with effectively infinite

range. Figure 6.5 shows the original and the MAP estimate profiles for 4 of the 25 generated

equilibria.
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Figure 6.5.: Original (blue) jφ, p′ and ff ′ profiles for a selection of edge currents and iterative
LGI MAP estimates (red) using a simple 3 knot line and Gaussian edge peak
model.

As with the prior variation, jφ at the edge is recovered well in each case while the accuracy of

the p′ and ff ′ MAP estimate varies. In some cases, the fact that the prescribed Gaussian peak
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can not match the target profile is evident and this reflects the real situation since the fine detail

of the Tokamak edge current is still not well known. It is likely however that integrals over

the edge region should match well. Since it is the field parallel and perpendicular components

that are usually discussed in ELM theory, the flux surface average of these, integrated over

0.75 < ψN < 1.00 (shown in green in figure 6.5) are calculated for each target and each MAP

estimate. Figure 6.6 shows this edge current for all 25 targets and estimates.

Figure 6.6.: Flux-surface average parallel and perpendicular currents < j⊥ > vs < j‖ >,
integrated over the pedestal region (0.75 < ψN < 1.0) for 25 target simulated
equilibria (blue) and iterative LGI MAP estimates (red).

The MAP estimates are in some cases a relatively large distance from their target which

indicates that the method will not immediately provide an accurate measurement of the mag-

nitude of both components. However, the fact the 2d spread is preserved suggests both quan-

tities might be inferred to some extent. If there were one degree of complete freedom (not

necessarily along < j‖ > or < j⊥ >) on which the magnetic data and equilibrium provided no

information, the required information would be filled by the prior and since the priors were

fixed for all 25 points, the results would follow a line and lose their 2d nature. For a rigorous

account, this must of course be re-examined when the full posterior can be explored properly

but this investigation suggests it may be possible to obtain at least the qualitative variation

of the plasma edge in the (< j‖ >, ∇p) and since only magnetic data is used, this could be

performed at their full temporal resolution, which on JET is much faster than the typical type-I

inter-ELM build up time. At the very least, the ∇p variation can be compared with what is

known about pe and pi from the kinetic diagnostics.
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6.4. Reconstructed H-Mode Equilibria

6.4.1. LGI MAP Results and prior selection

After rejecting suspected failed magnetic diagnostic coils (see Appendix B), the iterative LGI

is applied to find the MAP estimate for real data from a typical JET type-I ELMy H-Mode

pulse. As with the reconstruction of the simulated profiles, the exact choice of prior effects

the MAP, regardless of how weak it is, in directions in which the data provides no information

and hence the posterior is very flat. Figure 6.7 shows the MAP estimates under a verity of

smoothing priors.
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Figure 6.7.: MAP estimates of P (jφ, p′, ff ′ |Dm, Equilibrium) from the iterative linear scheme
of section 6.3.1 with different smoothing priors on p′ and ff ′ (coloured roughly by
relative strength). Magnetics data Dm taken from pulse 78601 - a type-I ELMy
H-mode at 58.530s, mid-way between two ELMs.

While the plasma core shows heavy dependence on the prior, the peak in jφ associated with

the H-Mode pedestal is seen clearly in every case, despite the tendency of smoothing priors

to discourage such features. There is a variation in the amplitude of this peak in all three

variables but the profiles with large peak edge current also show a positive region of p′ (i.e. a

non-monotonic pressure profile) and/or a large reduction in jφ in the plasma core. While such

profiles, known as current holes, have been observed in some special cases[86], it is not expected

in this pulse where only the Ohmic and neutral beam systems are providing heating/current

drive. Non-monotonic pressure profiles are not observed by any kinetic diagnostic and are

not expected to occur. Excluding the priors which result in these unexpected features leaves

four which all give approximately the same amplitude of edge current. Figure 6.8 shows jφ,

flux surfaces, q profile (Safety factor) and pressure profile for one of them, selected arbitrarily,

compared to the standard EFITJ solution. The selected prior in is shown as broken orange in

figure 6.7.
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Figure 6.8.: a) Flux surfaces, c) q profile (Safety factor) and d) pressure profile for selected
prior compared to standard EFITJ solution. b) Full 2D jφ(R,Z) for selected prior.
The electron pressure profile is also shown doubled for comparison (i.e assuming
Ti = Te and Zeff = 1).

Where it can be assumed that pi = pe, the MAP estimate p profile should match 2pe calcu-

lated from electron kinetic measurements, so the Thomson scattering standard analysis profile

is also shown. The simplest case is when both Te ∼ Ti and ne ∼ ni. With no particle or energy

sources, ion-electron collisions will cause the plasma to relax to Te = Ti and this is confirmed

during this pulse by measurements of Ti from the edge Charge Exchange Recombination Spec-

troscopy (CXRS) diagnostic standard analysis. The plasma fuel is deuterium for this pulse,

so ni = ne should be true if there are no impurities present. Measurement by the visible

spectroscopy diagnostic gives the average Zeff =
∑
j njZj/ne ≈ 3 for the H-Mode phase of

this pulse which, if the impurity is entirely carbon (of which the first wall is made) implies

p/pe ≈ 1.66. This is the lowest fraction that can be expected and the higher Z impurities that

are present, the closer to 2 it should be. It should also be noted that Zeff measurements are

often available from CXRS and while not present for this pulse, they usually give a lower value

of Zeff than the visible spectroscopy.

The agreement between the MAP estimate p profile and 2pe is remarkably good at the very

edge and in the core. It agrees far better than the clearly over-restricted p profile of the EFITJ

standard analysis which overestimates the pressure at the magnetic axis by 50%. The effect on

both the flux surfaces and Q profiles is large in the plasma core which explains the difficulties

analysing other diagnostics with the EFITJ flux surfaces. Using this MAP estimate instead of

the EFITJ solution for the fixed flux surface ne profile inversions of section 4.1 performs much

better, implying that the flux surfaces of the CT with equilibrium prior MAP estimates, are

far more accurate in the core.
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6.4.2. Pedestal evolution

Figure 6.9 shows the pedestal pressure pped at R = 3.72m from the MAP estimate of an in-

version performed at 5ms intervals through the pulse using the simple 3-knots and a Gaussian

peak model as in section 6.3.3. This is compared to the 2pe of the nearest HRTS standard

analysis results (red), which gives a fairly direct measurement at the relatively low temporal

resolution of 20Hz. Also shown (black) is 2pe using Te taken from the standard analysis elec-

tron cyclotron emission (ECE) diagnostic and ne taken from the the interferometry inversion

as in section 4.1 based on the MAP ψN estimate at each time point. Both the ECE and

interferometry have a temporal resolution similar to the 5ms intervals analysed here.

Figure 6.9.: Evolution of the pedestal pressure at R = 3.72m at 5ms intervals through a type-I
ELMy H-Mode pulse from MAP estimate of P (jφ, p

′, ff ′ |Dm, Equilibrium) using
simple 3-knot and edge peak parametrisation (blue) for p′ and ff ′. For comparison,
2pe derived from two independent diagnostic(s) is also shown. Two smaller time
ranges are shown expanded and alternate MAP estimates using 20-knot spline and
smoothing priors is shown in green.

Over the duration of the H-mode part of the pulse, the evolution of the magnetics/equilibrium

inferred pedestal pressure follows the kinetic measurement well in both trend and, somewhat

surprisingly given Zeff ≈ 3, in absolute magnitude. The strong parametrisation of the edge

Gaussian peak makes the inversion faster and more reliable but the results are seen if a 20-knot

linear interpolation profile is used with smoothing priors selected to discourage current-holes

and non-monotonic pressures. The green traces show the results of inversions using the selected

prior of figure 6.8. These two cases represent a significant change to the method and priors, yet

roughly the same results are seen. In either case, the priors are identical for every time point
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so the very accurate following of the collapse and build-up between ELMs can have no source

other than the magnetic measurements and proves beyond any doubt that they do provide

significant accurate information from inside the plasma boundary.

Between the separatrix formation and the L-H transition, the MAP estimate is much less

accurate in magnitude and shows a negative pressure for the strong parametrisation (while

not physical, this was not ruled out by the priors or parametrisation). Despite this, the

inferred values follow the trend of the kinetic trace after 52.2s. Before this, an abrupt change

in the inferred value is seen, which coincides almost exactly with the separatrix formation,

before which the plasma boundary is in direct contact with the poloidal limiter. The effect is

even clearer in the more weakly parametrised MAP estimates (green). This suggests that the

presence of the X-point on the boundary surface might play a special role in the way in which

the magnetic diagnostics provide information about the edge currents. Very recently, this has

also been identified by a more direct analytical method [87].

At each ELM, the drop in inferred pressure coincides with the drop observed by the interfer-

ometry and ECE. This shows that the response of the poloidal magnetics is at least as fast as

the 5ms inversion interval and so evolution over the inter-ELM period, which is rarely shorter

than 25ms for type-I ELMy H-modes at JET, can be observed clearly.

6.4.3. Parallel current evolution

The evolution of j‖ vs ∇p in the pedestal is of particular interest, since it is believed that

ELMs are triggered at a threshold in either j‖ (Peeling mode), in ∇p (Ballooning mode) or in

both (coupled Peeling-Ballooning mode). Figure 6.10 shows the flux surface average parallel

and perpendicular current, integrated over the pedestal region (0.8 ≤ ψN < 1.0) from each

MAP estimate.

For all the MAP estimates, the equilibrium prior was well satisfied so j⊥ relates to the

pressure gradient almost exactly. The integral of < j⊥ > over the pedestal region is therefore

effectively the same as the pedestal pressure trace in figure 6.9 and is shown here only to

compare against < j‖ >. The most striking difference is that while < j⊥ >, averaged over the

ELMs (broken lines), remains relatively constant during the main H-Mode part of the pulse

(54s < t < 62s), < j‖ > slowly increases. After the start of NBI heating at 53s, < j⊥ > rises

more rapidly than < j‖ > and after the heating ceases at 62.5s, < j⊥ > falls rapidly while

< j‖ > decreases slowly. It is possible that this is related to the relatively long current diffusion

time (of order seconds). For the equilibrium to be satisfied rapid changes in pressure gradient

must be followed almost immediately by j⊥ but j‖ does not need to react immediately.
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Figure 6.10.: Evolution of the flux-surface average parallel and perpendicular currents, inte-
grated over the pedestal region (0.8 ≤ ψN < 1.0) at 5ms intervals through a
type-I ELMy H-Mode pulse from MAP estimate of P (jφ, p, f |Dm, Equilibrium).
Bottom: Expanded plot of regular ELMs including Dα emission showing ELM
crashes.

The inter-ELM detail is harder to draw even qualitative conclusions from without proper

examination of the uncertainties. Given the results of the equivalent simulations in section

6.3.3, it is possible that each variable may be polluting the inference of the other. The fact

that the two traces show very similar inter-ELM evolution suggests this may be the case,

although it remains possible that this is a real physical effect, given that models for the parallel

current usually depend on the temperature and density gradients [88]. What differences there

are between the inter-ELM < j‖ > and < j⊥ > evolution does not appear to be strongly

consistent. Many of the inter-ELM periods (D,H,J,K,L,M,N and P) show a initially sharp rise

in < j‖ > followed by a slower increase (sometimes almost none) while < j⊥ > continues to

increase all the way up to the next ELM. The longer ELM-free periods (O,Q,R and S) however,

all show almost exactly the same trend in both components.

These results demonstrate the capability of the method to extract considerable detail of

the physical quantities of interest from the JET magnetic data. Unfortunately, there was

insufficient time within this project to conduct a detailed examination of the results.
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6.5. Assessment of Bayesian Equilibrium with

Polarimetry

One of the principal objectives of this work was to use the polarimetry and interferometry

forward models together with magnetics and the equilibrium prior. The polarimetry should in

principle dramatically improve the inferred information about the current distribution. This

is especially true for the plasma edge, since the outboard most channel (channel 4, see figure

3.3) of the polarimetry effectively measures the poloidal field just inside the pedestal. The field

outside the LCFS can already be accurately inferred from the magnetic diagnostics and both

of these provide high enough temporal resolution to observe the inter-ELM evolution. The

difference between the two relates directly to the pedestal toroidal current but the absolute

uncertainty of the channel 4 measurement must be less than the difference. This is necessarily

a small fraction of the magnitude, which is approximately proportional to the total plasma

current. The diagnostic random noise is far below this level and while the diagnostic calibration

uncertainty is possibly large in comparison, it will be approximately constant throughout the

flat-top part of the plasma pulse, so the inter-ELM variation should be inferable. Unfortunately,

the oscillation with line integrated density that is present in the data is larger than the inter-

ELM variation and manifests clearly in the inferred pedestal current, obscuring any useful

information. To illustrate this, figure 6.11 shows the standard analysis rotation signal ∆ψ ∼∫
neBZ dl for channel 4, versus time and versus line integrated density (l) for the same channel.

Figure 6.11.: Polarimetry rotation angle ∼
∫
neBZ dl for edge channel (4) versus time and line

intgrated density, showing obscurity of inter-ELM data by oscillations with line
integrated density.

Both the oscillations and the drop at the ELMs are clearly visible in the signal. Variations
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in the pedestal density should appear as a change along the main diagonal in ψ(l) and changes

in only the poloidal field should appear vertically (at constant l). Attempts were made to

develop a post-processing method to isolate and remove the oscillation but subtle changes in

phase and amplitude through the pulse make this difficult. Removal of the oscillation, either

by post-processing or by isolating and removing the cause, should allow a reasonably accurate

and very high temporal resolution inference of the pedestal current variation.
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The objective of the wider Bayesian analysis project at JET is to improve the knowledge

of the plasma state, by inferring a single consistent description with Bayesian probability

theory, using forward models and data from as many as possible of the available JET diag-

nostics. Building on the previously developed magnetic diagnostic model, this thesis work

has contributed detailed forward models for 4 JET diagnostic systems: the interferometer,

polarimeter and the core and edge LIDAR Thomson Scattering systems. The models have

been used, in some cases independently and sometimes in combinations, to infer information

about the electron density, electron temperature and current in the JET plasma, as well as to

investigate several physical effects involving these parameters.

These advanced probabalistic methods have been used to extract useful information from

data that has been available for many years. For each part of this work, attempts to use the

same data had been made previously with standard methods, but had either been unsuccessful

or had made limited use of the information that was really available, underestimating what

is possible. With the new methods, this large collection of previous plasma pulses can be

re-examined in greater detail.

7.0.1. Interferometry

The Interferometry model was implemented and used with the linear Gaussian inversion to

reconstruct electron density profiles with a complete description of uncertainty. It was shown

that by adding reasonable prior assumptions there was sufficient information in only 8 numbers,

to not only infer accurate profiles, but also to highlight problems with the magnetic geometry

used in normal analyses. Coupled instead with the appropriate magnetic diagnostics and the

plasma model, the interferometry was used to help infer the plasma current - something that

would not normally be considered.

7.0.2. Polarimetry

A model was developed for the full evolution of the polarisation of far-infrared light through

Tokamak plasmas and coupled with a model for the specifics of the JET polarimetry system.

Unfortunately, complexities of the diagnostic system significantly hampered the polarimetry

analysis in this work. Measured data was compared with predictions of these models, based on

EFIT equilibria and density profiles from the interferometry inversion. This showed that both

the instrument calibration and equilibrium reconstruction could be significantly inaccurate in

medium and high density H-mode plasmas. Basing the models on current tomography instead,

162



with a weak jφ regularisation prior, showed that the predictions were strongly effected by the

current distribution. While unable to help isolate the calibration issues, this indicated that the

polarimetry would provide a great deal of information about jφ, if the calibration issues could

be resolved.

The model predictions were then used to asses two contradicting derivations, made in pre-

vious theoretical papers for the small effects of finite temperature, alongside the cold plasma

approximation. The effects were smaller than the calibration uncertainties, so as well using over

15000 data points, the experience gained developing the polarimetry model was used to treat

the calibration issues. The most complete model, which included relativistic effects, was shown

to be in much better agreement - verifying the model for use in future Tokamak polarimetry

analysis and giving the first experimental observation of relativistic finite temperature effects

on plasma polarimetry.

7.0.3. LIDAR

A highly detailed forward model was developed for the JET LIDAR Thomson scattering sys-

tems and used simultaneously with both the core and edge LIDAR systems at JET. This

model included the effects of the instrument function (for the first time on a LIDAR TS sys-

tem), both as a convolution effect on the prediction and as a reducing and correlating effect

on the photo-electron counting noise.

The model also included nuisance parameters for the many calibration factors involved,

allowing the effects of their uncertainty to be automatically included in the inferred physical

quantities. A number of novel methods were developed to obtain more accurate values for the

calibration factors directly from the available data, with one using a special Bayesian analysis

technique for handling the inference of variances and outliers.

By combining the two LIDAR systems with the interferometry, the effects of these uncertain-

ties were reduced and accurate, high resolution electron temperature and density profiles were

inferred, despite some calibration parameters remaining unknown. The remaining calibrations

were then determined by performing the inversion on a large number of plasmas.

The calibration uncertainties have meant that the edge LIDAR system has been largely

overlooked, due a strong belief that it’s line of sight did not reach the top of the H-mode

pedestal. With the combined analysis, it was immediately clear that the edge LIDAR system

gives very high-resolution detail of the full pedestal in many plasma. Using this ability, the

pedestal shape and approximate evolution over the ELM cycle was examined for a series of

similar plasmas, showing the possibility of different phases of the pedestal recovery.
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7.0.4. Bayesian Equilibrium

The uncertainty in the magnetic topology contributes much of the uncertainty in the analysis of

the diagnostics, as was demonstrated for the Interferometry, LIDAR systems and especially the

Polarimetry. This was true as a properly evaluated uncertainty using the current tomography

(CT) model and jφ regularisation prior, or as an inaccuracy in the EFIT solution.

The magnetic topology uncertainty was reduced by adding the equilibrium condition as a

Bayesian prior to the CT model and is the first known attempt to treat the experimental plasma

equilibrium using Bayesian analysis. The method was used to study exactly what could be

inferred about the internal plasma pressure and current, from only external poloidal magnetic

diagnostics. Contrary to claims of some theoretical papers, it was shown that information can

be inferred about the plasma inside the boundary, especially for strongly shaped and diverted

plasmas, and that this information was concentrated at the plasma edge. The relationships in

βθ, li and µi and the large uncertainty beyond these predicted for near-circular cases, was shown

with a simulated L-mode limited plasma with low elongation. This was done by sampling the

equilibrium posterior, effectively exploring all possible plasmas consistent with the observations

and near equilibrium.

For diverted H-mode plasmas, the posterior exploration could not be performed and an itera-

tive linear method was developed to find the maximum posterior. With this, it was shown that

with the reasonable assumption of pressure monotonicity, much of the pressure profile could be

retrieved from a simulated equilibrium with local structure, with especially high accuracy at

the plasma edge. In a real JET H-mode pulse, good agreement was shown between the inferred

pressure and the electron pressure profile pe, taken from kinetic diagnostics. Concentrating on

the plasma edge, the pressure at the top of the pedestal was examined throughout a type-I

ELMy H-mode pulse, showing very good agreement in both magnitude and evolution with

the kinetic pe. The agreement suggests that the pedestal ion pressure must follow pe closely

throughout the ELM cycle and the approach effectively introduces a new and independent

diagnostic of the total pedestal pressure.

The ability to infer and separate the parallel and perpendicular components of the pedestal

current was examined for a simulated equilibrium, showing that information on both was

present, although some contamination between the two does occur. Based on this, and the

clearly well inferred perpendicular component (i.e pressure), the evolution of the parallel cur-

rent was inferred for the real H-mode pulse - an important quantity that is typically difficult

to obtain in Tokamak plasmas. Unfortunately, there was insufficient time to investigate the
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accuracy and implications of the result.

Overall, the Bayesian equilibrium method was able to infer significantly greater detail than

had been seen before, or was deemed possible from the magnetic diagnostics. The scope for

further development is also large, since the iterative LGI method (and software) used are not

limited in resolution, other than by the number of computers available. The equilibrium priors

and plasma models are entirely separate modular components, so modification by, for example,

allowing for plasma flow and anisotropic pressure, will be relatively simple. The modularity also

allows for almost immediate use on other Tokamaks whose magnetic diagnostics are modelled

in the Minerva framework (e.g. MAST). Coupled with other diagnostic models, such as the

polarimetry (assuming the calibration issues were addressed), the inferred detail is likely to

be even greater. Finally, with a little further development of the exploration algorithms, and

certainly with more computation power, it should be possible to sample the posterior for H-

mode plasmas, giving a full description of uncertainty in the equilibrium for any combination

of diagnostics, models and assumptions.
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A. JET Polarimeter unknown optics

model and calibration

This appendix contains, for the sake of reference, the details of the existing model that attempts

to account for some unknown optical effects in the JET Polarimeter system. It adds the extra

parameter D, as a non-linear part of C.

Polarisation descriptions

For directly converting between the description of polarisation as amplitude ratio/phase shift

(θ,φ) and as principal and ellipticity angles (ψ,χ):

tan 2ψ = tan 2θ cosφ cos 2θ = cos 2χ cos 2ψ (A.1)

sin 2χ = sin 2θ sinφ tanφ = tan2χ / sin 2ψ (A.2)

(A.3)

Detected signals

The JPF nodes used are:

g4-hwp[ch] Half Wave Plate position - gives initial polarisation

(which is the plasma polarisation ψp during calibration).

g4-rms[ch] Root-Mean-Square of i signal: 〈i · i〉

g4-rmp[ch] Root-Mean-square of Primed i signal: 〈i′ · i′〉

g4-psd[ch] Phase-Sensitive Detected signal: 〈i · p〉

g4-psp[ch] Phase-Sensitive detected part-Primed signal: 〈i′ · p〉

R = PSD / RMS (A.4)

R′ = PSP /
√
RMS2 +RMP 2 (A.5)
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The following give the ’detected’ polarisation in both forms to/from R,R’. This encodes the

ampltiude ratio θD of the i and p components at the detectors but the phase difference φD

between these components before the recombination plate that mixes the probing and

frequency shifted beams. It also contains a fixed phase offset due to the electronics.

R = C−1 tan θD cosφD (A.6)

R′ = C−1 tan θD sinφD (A.7)

tanφD = R / R′ (A.8)

tan θD = C R / cosφD (A.9)

tanψD =
2 C R

(1− C2 (R2 +R′2))
(A.10)

tanχD =
2 C R′

(1 + C2 (R2 +R′2))
(A.11)

Forward function for calibration (ψp, χp = 0) → (R, R′)

Thses give what the detected signals (R,R′) would be given the plasma polarisation (ψp, χp)

and the calibration constants.(C,D, ξ, φ0, θ
′
0). However, they are only true when there is

no plasma/initial ellipticity - χp = 0.

θ∗ = ψp − θ′0 (A.12) R

R′

 =
1

C (1 + cos 2ξ cos 2θ∗)

 cosφ0 − sinφ0

sinφ0 cosφ0

 ·
 sin 2θ∗

− sin 2ξ cos 2θ∗

 (A.13)

The calibration proceedure is simply to fit these so that (R,R′) matches the detected signals

for the scan of ψp which here is ψp =g4-hwp[ch], by varying C,D, ξ, φ0 and θ′0.
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Inversion (R, R′) → (ψp, χp)

Obtaining the plasma polarisation (ψp, χp) from the raw signals (R, R′) and calibration

constants.(C,D, ξ, φ0, θ
′
0)

UR =

 cosφ0 sinφ0

− sinφ0 cosφ0


 R

R′

 (A.14)

raux =
C UR

1 + C D UR1
(A.15)

r =
2raux

1 + r2
aux

(A.16)

F =
(1− r2

aux)

(1 + r2
aux)

(A.17)

χp = 1
2 sin−1 (r2 cos 2ξ + F sin 2ξ) (A.18)

ψp = θ′0 + tan−1 (F cos 2ξ − r2 sin 2ξ) (A.19)

Forward function for plasma (ψp, χp 6= 0) → (R, R′)

This was not derived as part of the original work, it is just a direct mathematical reversal of

the inversion in section A.

A = cos 2ξ tan (2ψp − 2θ′0) (A.20)

B = sin 2ξ tan (2ψp − 2θ′0) (A.21)

F = cos 2ξ / sin 2χp (A.22)

G = sin 2ξ / sin 2χp (A.23)
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a =
A2F 2

(1 +G)
+B2(1 +G) + 2ABF + (1 +G) (A.24)

b = −2F − 2A2F

(1 +G)
− 2AB (A.25)

c =
A2

(1 +G)
+ (1−G) (A.26)

raux2
= (−b±

√
b2 − 4ac)/2a (A.27)

(A.28)

Pick the smallest real solution of the quadratic (raux2).

raux1
= −

(
AC

(1 +D)
+B

)
raux2

+
A

(1 +D)
; (A.29)

C

 R

R′

 =

 cosφ0 − sinφ0

sinφ0 cosφ0

 raux (A.30)

Cold plasma line-integral approximations

The cold-plasma approximations for seperated Faraday/Cotton-Mouton effects are:

∆ψ ≈ e3

ω2ε0m2
ec

∫
ne(z)Bz(z) dz (A.31)

χ ≈ e4

2ω3ε0m3
ec

∫
ne(z)B

2
⊥(z) dz (A.32)
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B. Magnetic Diagnostic Coils Rejection

Procedure

The JET poloidal magnetic diagnostics presently consist of 230 pickup coils, 88 saddle coils

and 6 full toroidal flux loops. For each pulse and/or time point any coil may suffer complete

failure or large systematic error beyond their random noise. Each day, JET performs a dry-run

pulse where each PF coil is turned on individually. No plasma is present so the poloidal field

is created only by the PF coils and possibly iron core eddy currents. The following admittedly

ad-hoc procedure is used in this work to reject suspect coils:

1. Enable all diagnostic coils.

2. Load the data for the nearest dry-run pulse to the plasma pulse desired.

3. Estimate the random noise level σ from the scatter on the baseline before poloidal field is present.

4. For time slices every 500ms including the switching of every PF coil, repeat the following until
the worst fitting diagnostic coil has χ2 < 4:

a) Using jφ = 0 for the plasma, fit the iron core currents to best match the predictions to
data of the remaining diagnostic coils.

b) Reject the coil with the highest χ2.

5. Enable only coils which had χ2 < 4 for all time slices of the dry-run.

6. Load the data of the plasma pulse and time slice of interest.

7. Repeat the following until every diagnostic coil has χ2 < 10:

a) Using a very weak CAR prior perform a standard CT LGI for both plasma and iron core
currents.

b) Reject the coil with the highest χ2.

Figure B.1 shows the 4 saddle and 29 pick-up coils rejected during the dry-run test and the

4 further pick-up coils rejected during the plasma test for the pulse and time point from which

most of the results in section 6.4 are derived.
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Figure B.1.: Magnetic diagnostic coils rejected during dry-run cross check with PF coils (ma-
genta) and during basic CT test on a typical time point (grey). Also shown are
is the MAP toroidal plasma currents at the final inversion and the χ2 of the
remaining coils.

NB: Not all coils are visible as many share toroidal/poloidal coordinates with others. Rejected coils are shown on top.
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C. Glossary - Terms and Acronyms

This section gives, for ease of reference, terms and acronyms used in this document. The
’scope’ indicates whether the term is used only in this document (Document), in the Bayesian
and/or integrated analysis communities (Analysis), at JET (JET) or throughout the Tokamak
community (Tokamak).

Term/Acronym Brief description Scope Page
CT Current Tomography Document 52
LGI Linear Gaussian Inversion Document 44
TLGI Truncated Linear Gaussian Inversion Document 44
MCMC Markov Chain Monte Carlo Analysis 50

(Typically Metropolis-Hastings Algorithm)
GA Genetic Algorithms Analysis 49
Minerva Software and conceptual framework in which Document 42

this work was carried out.
MAP MAximum Posterior Analysis 42
Forward Model Diagnostic model that gives most likely data for Analysis 38

given physics and calibration state.
JET Joint European Torus - The Tokamak this work covers Tokamak 28
MAST Mega-Amp Spherical Tokamak - A spherical tokamak Tokamak 43

also based on the Culham site with JET.
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TF Toroidal field (usually coils) Tokamak 16
PF Poloidal field (usually coils) Tokamak 17
Vacuum Field Magnetic field without the part created by the Tokamak 17

plasma currents
Ripple Variation of TF due to finite number of TF coils. Tokamak 16
Dry-Runs Full pulses with no plasma for magnetics calibration. JET 170

Also useful for some diagnostic calibration.
First Wall Geometry of last material surface facing the plasma. Tokamak 17
LCFS Last Closed Flux Surface Tokamak 17
Magnetic Axis Centre of nested flux surfaces in poloidal plane. Tokamak 17
Normalised Flux Magnetic flux (usually poloidal) normalised Tokamak 20

to 0 at magnetic axis and 1 at LCFS
X-point Point of zero poloidal field, usually on the Tokamak 18

separatrix.
Separatrix Flux surface that passes through the X-point in Tokamak 18

a diverted geometry plasma.
SOL Scrape Off Layer Tokamak 18
Divertor Special part of vessel/first wall used extract exhaust. Tokamak 18
Safety Factor q Related to average magnetic field line Tokamak 17

pitch angle of a flux surface Tokamak
Beta Poloidal Ratio of volume integral of pressure to poloidal Tokamak 22

(βθ) field integrated along LCFS.
Strike Points Contact points of separatrix on the first wall. Tokamak 18
H-Mode High confinement mode due to an ETB. Tokamak 24
L-Mode Low confinement mode. Tokamak 24
Pedestal Large gradient region of equilibrium profiles Tokamak 25

(ne, Te etc) at plasma edge.
ETB Edge Transport Barrier Tokamak 24
ELM Edge Localised Model Tokamak 26
Ohmic Plasma Plasma driven only inductively by main transformer. Tokamak 28
NBI Neutral Beam Injection Tokamak 28
ICRH Ion Cyclotron Resonant Heating Tokamak 28
EFIT(J) Equilibrium FITting Code (JET) Tokamak 21
Standard Analysis JET automatic standard data processing (A.K.A ’Chain 1’) JET 30

TS Thomson Scattering Tokamak 98
LIDAR Light Detection and Ranging (Special case TS system) JET 102
PMT Photo Multiplier Tube Diagnostics 107
ADC Analog to Digital Converter Diagnostics 107
Ambient Light LIDAR-TS: Constant background plasma light not from TS. Document 108
Stray Light LIDAR-TS: Short light spikes/pulses possibly Document 114

from reflections etc
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