$$A(x,y) = \frac{\Gamma(x+x_0+y)\Gamma(x+x_0-y)}{\Gamma(x+x_0)^2}$$
(1)

$$\Gamma(z) = \int I(\omega,x,y) \exp[-i\omega z] d\omega$$
(2)

$$x_0 = 0.6$$
(3)

$$I = 0 \text{ for } |\omega| > 0.2,$$
(4)

$$|x|,|y| > 0.05$$
(5)

$$\Gamma(z) = \int I(\omega, x, y) \exp[-i\omega z] d\omega$$
 (2)

$$x_0 = 0.6 \tag{3}$$

$$I = 0 \text{ for } |\omega| > 0.2, \tag{4}$$

$$|x|, |y| > 0.05$$
 (5)

 $I(\omega,x,y)$ varies fairly rapidly over ω slowly over x,y, except that it has abrupt changes of sign. I need to show $[A(x,y)-1] \ll 0.2$ over that range of x,y and ω . Numerically, for my fully modelled and rather complex I, it appears to be within that everywhere.