$$
\begin{align*}
A(x, y)= & \frac{\Gamma\left(x+x_{0}+y\right) \Gamma\left(x+x_{0}-y\right)}{\Gamma\left(x+x_{0}\right)^{2}} \tag{1}\\
\Gamma(z)= & \int I(\omega, x, y) \exp [-i \omega z] d \omega \tag{2}\\
x_{0}= & 0.6 \tag{3}\\
I=0 \text { for } & |\omega|>0.2, \tag{4}\\
& |x|,|y|>0.05 \tag{5}
\end{align*}
$$

$I(\omega, x, y)$ varies fairly rapidly over ω slowly over x, y, except that it has abrupt changes of sign. I need to show $[A(x, y)-1] \ll 0.2$ over that range of x, y and ω. Numerically, for my fully modelled and rather complex I, it appears to be within that everywhere.

