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Outline
- Introduction
   - Flux surfaces and current profiles
   - Magnetic equilibrium 
   - Bayesian analysis

- Bayesian equilibrium
   - Current-tomography
   - Current tomography + Grad-Shafranov
   - L-Mode reconstructions
   -  H-Mode results

- Internal measurements
   - Motional Stark effect.
   - Coherence Imaging
   - Imaging MSE
   - Direct jφ imaging.

- Integrated Data Analysis    
   - Current diffusion
   - Imaging MSE comparison
   - Sawtooth models

2 / 45



Max-Planck Institut
für Plasmaphysik
Greifswald / Garching

ASDEX
Upgrade

Flux Surfaces

- The Tokamak: External toroidal field coils and a large current in the plasma result in a helical 
   magnetic field.

Toroidal Plasma 
Current

Poloidal Field
+

Toroidal Field Coil
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Flux Surfaces

- The Tokamak: External toroidal field coils and a large current in the plasma result in a helical 
   magnetic field.

Toroidal Plasma 
Current

Poloidal Field
+

Toroidal Field Coil

=
B

- Many plasma quantities are functions of ψ, e.g. ne, Te.
- Flux surfaces are the basis of our knowledge and used for:
   - Comparing/combining measurements ('mapping')
   - Basis of 1D transport calculations
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Flux Surfaces

- The Tokamak: External toroidal field coils and a large current in the plasma result in a helical 
   magnetic field.

Toroidal Plasma 
Current

Poloidal Field
+

Toroidal Field Coil

=
B

- Field lines form surfaces of constant magnetic flux

Poloidal magnetic flux:

- Many plasma quantities are functions of ψ, e.g. ne, Te.
- Flux surfaces are the basis of our knowledge and used for:
   - Comparing/combining measurements ('mapping')
   - Basis of 1D transport calculations
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- The field and current balance the kinetic pressure:

B

j
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- The current distribution and resulting field are important for the
    plasma stability:
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Current and stability

- The field and current balance the kinetic pressure:

- The current distribution and resulting field are important for the
    plasma stability:
      

e.g.: When the central q value falls below 1.0, the plasma core periodically suddenly expels particles 
and energy - known as a 'sawtooth' crash. The crash is a magnetic reconnection event, which occurs 
far more rapidly than explained by simple theoretical models.

...(we'll return to this later)
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Magnetic Equilibrium
- How do we know j and B?

B

j

Assume: Axisymmetry + Isotropic pressure + No flow
Define the 'poloidal current flux' f:
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Assume: Axisymmetry + Isotropic pressure + No flow
Define the 'poloidal current flux' f:

Kinetic pressure p(ψ) and f(ψ) are constant on flux surfaces. 
Decompose the force balance into toroidal and poloidal: 

5 / 45



Max-Planck Institut
für Plasmaphysik
Greifswald / Garching

ASDEX
Upgrade

Magnetic Equilibrium
- How do we know j and B?

B

j

Assume: Axisymmetry + Isotropic pressure + No flow
Define the 'poloidal current flux' f:

Kinetic pressure p(ψ) and f(ψ) are constant on flux surfaces. 
Decompose the force balance into toroidal and poloidal: 

Also known as the Grad-Shafranov equation:

For very simple p(ψ) and f(ψ) functions, one can solve the Grad-
Shafranov equation for given boundary ψ.

ψ(R, Z)
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- How do we know j and B?

B

j

Assume: Axisymmetry + Isotropic pressure + No flow
Define the 'poloidal current flux' f:

Kinetic pressure p(ψ) and f(ψ) are constant on flux surfaces. 
Decompose the force balance into toroidal and poloidal: 

Also known as the Grad-Shafranov equation:

For very simple p(ψ) and f(ψ) functions, one can solve the Grad-
Shafranov equation for given boundary ψ.

Boundary ψ calculated from magnetic pick-ups around plasma 
perimeter

Pick-up 
coils (Bθ)

Toroidal flux-loops (ψ)

Saddle loops (Δψ)
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B

j

Pick-up 
coils (Bθ)

Toroidal flux-loops (ψ)

Saddle loops (Δψ)
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--For very simple p(ψ) and f(ψ) functions, one can solve the Grad-
Shafranov equation for given boundary ψ.

-Boundary ψ calculated from magnetic pick-ups around plasma 
perimeter

- Usually only converges for simple p, f functions.
- Difficult to deal with pedestal pressure/current.
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Magnetic Equilibrium

B

j

Pick-up 
coils (Bθ)

Toroidal flux-loops (ψ)

Saddle loops (Δψ)

but....   
- Is the converged solution the only solution?
- Are the simplified p, f profiles over-constrained / under-constrained?
- Are the data consistent with the assumptions?

p(ψ)
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--For very simple p(ψ) and f(ψ) functions, one can solve the Grad-
Shafranov equation for given boundary ψ.

-Boundary ψ calculated from magnetic pick-ups around plasma 
perimeter

- Usually only converges for simple p, f functions.
- Difficult to deal with pedestal pressure/current.
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- Rigorous framework for dealing with the question:

      What can we know about the plasma, given the data we measured?

We need:
  µ   -  a set of parameters describing the state of the plasma that we want to know.
  D  -  a set of measured data.
  P(D | µ)  - The likelihood distribution: A model of what data might be measured given a certain set of 
                   plasma parameters.
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Posterior - What plasma parameters are probable
                 given that we measured the data D
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- Rigorous framework for dealing with the question:

      What can we know about the plasma, given the data we measured?

We need:
  µ   -  a set of parameters describing the state of the plasma that we want to know.
  D  -  a set of measured data.
  P(D | µ)  - The likelihood distribution: A model of what data might be measured given a certain set of 
                   plasma parameters.

  Typically, a 'forward model' that gives the most likely data <D> = f(µ) and a simple Gaussian distribution of 
uncertainty from measurement noise:
                   
  

What we want is the posterior distribution:
Prior - What plasma parameters do 
            we believe are likely Likelihood

Posterior - What plasma parameters are probable
                 given that we measured the data D

Evidence - What was the probability of 
                  measuring the data D
                  (An irrelevant constant)

Any combination of diagnostics:

(More explanation and examples available for Q&A)7 / 45
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Current Tomography

- How do we apply this to current distribution?

Physics Model:  
grid of axisymmetric
current beams.

Forward Model / Likelihood:
Simple prediction of 
magnetic diagnostics with 
Gaussian likelihood function.
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- How do we apply this to current distribution?

Physics Model:  
grid of axisymmetric
current beams.

Forward Model / Likelihood:
Simple prediction of 
magnetic diagnostics with 
Gaussian likelihood function.

Prior: Simple regularisation of grid - neighboring current must be similar (first attempt)

Posterior: 
<---   Samples of flux surfaces
   Shows uncertainty and degeneracy 
   - Very ill-posed problem!

8 / 45



Max-Planck Institut
für Plasmaphysik
Greifswald / Garching

ASDEX
Upgrade

Current Tomography

- How do we apply this to current distribution?

Physics Model:  
grid of axisymmetric
current beams.

Forward Model / Likelihood:
Simple prediction of 
magnetic diagnostics with 
Gaussian likelihood function.

Prior: Simple regularisation of grid - neighboring current must be similar (first attempt)

Posterior: 
<---   Samples of flux surfaces
   Shows uncertainty and degeneracy 
   - Very ill-posed problem!

   However, some quantities are well known --->
       - Axis position 
       - X-point position
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- Can we re-introduce the force balance? --> Bayesian Equilibrium
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- Can we re-introduce the force balance? --> Bayesian Equilibrium
- Force balance: We observe that the magnetic and pressure forces are approximately equal:

Sum over current beams

How good should 
our equilibrium be?
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Current Tomography + Equilibrium

- Can we re-introduce the force balance? --> Bayesian Equilibrium
- Force balance: We observe that the magnetic and pressure forces are approximately equal:

- Now we can ask the question:

Sum over current beams

How good should 
our equilibrium be?

What space of plasma currents and pressures are consistent 
with the measurements and are close to equilibrium?
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Bayesian Equilibrium

L-Mode plasmas: Low resolution current beam grid, fully explored posterior distribution:

Toroidal 
current j

Pressure
p

Poloidal 
current flux
f

Sim
ulated

Uncertainty is large in core due to degeneracy:  Equilibrium doesn't tell us much
Flux surfaces:

10 / 45



Max-Planck Institut
für Plasmaphysik
Greifswald / Garching

ASDEX
Upgrade

Bayesian Equilibrium

L-Mode plasmas: Low resolution current beam grid, fully explored posterior distribution:

Toroidal 
current j

Pressure
p

Poloidal 
current flux
f

Sim
ulated

Uncertainty is large in core due to degeneracy:  Equilibrium doesn't tell us much
Flux surfaces:

Samples of integral quantities reveal relations between 'Shafranov Integrals' 
that are well determined in simple analytical equilibrium solutions:
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Bayesian Equilibrium

H-Mode plasmas: Very sharp changes in j and p require high-resolution current beam grid:

jφ
Too many parameters to explore the posterior (Monte-Carlo algorithm). Needs:
   - More computation power
   - Better algorithms

11 / 45



Max-Planck Institut
für Plasmaphysik
Greifswald / Garching

ASDEX
Upgrade

Bayesian Equilibrium

H-Mode plasmas: Very sharp changes in j and p require high-resolution current beam grid:

jφ
Too many parameters to explore the posterior (Monte-Carlo algorithm). Needs:
   - More computation power
   - Better algorithms

but, maximum posterior can be calculated:
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Pedestal current
and pressure resolved
from external magnetic
measurements alone.
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Pedestal Pressure

Flexible p, f profiles show that pedestal pressure can be very accurately measured with magnetic coils.
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Flexible p, f profiles show that pedestal pressure can be very accurately measured with magnetic coils.
 - Matches kinetic measurements almost perfectly.
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2pe Thomson Scattering (HRTS)

2pe Interferometry (ne) x Electron Cyclotron Emission (Te)
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2pe Thomson Scattering (HRTS)

2pe Interferometry (ne) x Electron Cyclotron Emission (Te)
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Pedestal parallel and perpendicular currents can be separated:

 - Very good information on edge current, even from magnetics alone!
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   - Coherence Imaging
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- Integrated Data Analysis    
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   - IMSE results in comparison
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- Rigorous determination of uncertainty
- Too computationally intensive for H-mode
- Need internal measurements!
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Outline
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   - Flux surfaces and current profiles
   - Magnetic equilibrium 
   - Bayesian analysis

- Bayesian equilibrium
   - Current-tomography
   - Current tomography + Grad-Shafranov
   - L-Mode reconstructions
   -  H-Mode results

- Internal measurements
   - Motional Stark effect.
   - Coherence Imaging
   - Imaging MSE
   - Direct jφ imaging.

- Integrated Data Analysis    
   - Current diffusion
   - IMSE results in comparison
   - Sawtooth models

- Rigorous determination of uncertainty
- Too computationally intensive for H-mode
- Need internal measurements!

How can we measure in the core?
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How can we measure deep inside the plasma?

Magnetic Surfaces
Plasma Edge
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Internal Measurements

How can we measure deep inside the plasma?
Spectroscopy - observe the light emitted by atoms in the plasma:
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e.g. Hydrogen Balmer-α line:

hν

Inject high-energy neutral hydrogen into core of plasma (for heating/fueling)
Excitation by ion/electron impact excites the higher energy levels.
Spontaneous decay emits photon that can be measured by a spectrometer.

Magnetic Surfaces
Plasma Edge
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e.g. Hydrogen Balmer-α line:
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Inject high-energy neutral hydrogen into core of plasma (for heating/fueling)
Excitation by ion/electron impact excites the higher energy levels.
Spontaneous decay emits photon that can be measured by a spectrometer.

Magnetic Surfaces
Plasma Edge

ASDEX Upgrade Vacuum Vessel

Neutral Beam 
Injection
5MW at 60keV
(3 x 106 ms-2)
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Motional Stark Effect Polarimetry
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Motional Stark Effect Polarimetry
The atomic energy levels are modified by the local magnetic/electric fields:
  - Zeeman splitting (magnetic field)
  - Stark splitting (electric field):
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Neutral Beam 
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Stark splitting by Lorenz-transformed magnetic field:
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Coherence Imaging: Spectroscopic technique, modulated in space and imaged with a CMOS camera.
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What does Bz tell us about j in the core?
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More generally elongation is important:
[CC.Petty Nucl. Fus. 2002]

This is only an approximation!  ... but we now understand that dθ/dR holds the information about j.
What can we see in dθ/dR at the axis?

To first order, local j relates to local derivative of measurement

Typically, in core:
               R ~ 1.6m

               θ < 5°
               dθ/dR ~ 35°m-1.

     dθ/dR >> (θ/R)
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What do we see in the IMSE data?
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What do we see in the IMSE data?
 - Sawtooth changes are very small - need good statistics.
 - Average over Z near axis
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What do we see in the IMSE data?
 - Sawtooth changes are very small - need good statistics.
 - Average over Z near axis
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Outline
- Introduction
   - Flux surfaces and current profiles
   - Magnetic equilibrium 
   - Bayesian analysis

- Bayesian equilibrium
   - Current-tomography
   - Current tomography + Grad-Shafranov
   - L-Mode reconstructions
   -  H-Mode results

- Internal measurements
   - Motional Stark effect.
   - Coherence Imaging
   - Imaging MSE
   - Direct jφ imaging.

- Integrated Data Analysis    
   - Current diffusion
   - IMSE results in comparison
   - Sawtooth models

- Rigorous determination of uncertainty
- Too computationally intensive for H-mode
- Need internal measurements!

-Excellent internal measurements.
- Good dynamics from very approximate derivation of Δjφ
- Calibration very difficult to required accuracy.
- Need to include in equilibrium
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Integrated Data Analysis - Equilibrium

New approach to equilibrium at ASDEX Upgrade:

 - Grad-Shafranov solver, but with rigorous treatment of errors
 - Try to mitigate effect of nonphysical regularisation with as much realistic information as possible:
   - Pressure constraints: ne, Te, Ti, Zeff, fast-ions (from modeling)
   - Geometric information (Inboard/outboard agreement of diagnostics)

[R. Fischer et. al.]
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Integrated Data Analysis - Equilibrium

New approach to equilibrium at ASDEX Upgrade:

 - Grad-Shafranov solver, but with rigorous treatment of errors
 - Try to mitigate effect of nonphysical regularisation with as much realistic information as possible:
   - Pressure constraints: ne, Te, Ti, Zeff, fast-ions (from modeling)
   - Geometric information (Inboard/outboard agreement of diagnostics)
   - Current diffusion:
   - Modeled current 'sources': ECCD, bootstrap, NBI.

Provides a weak constraint on jφ from expected evolution from previous time-points.
- i.e. physically realistic (and informative) prior information.

Bootstrap current

Current drive (ECCD, NBI etc)

Kinetic diagnostics

Current Diffusion Equation (CDE):

[R. Fischer et. al.]
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Integrated Data Analysis Equilibrium

Example:   Counter-current Electron Cyclotron Current Drive (ECCD)

ECCD drives localised on-axis current 
   - Not seen by magnetics (small due to low area of centre)
   - No effect on pressure profile = not seen by kinetic inputs

[R. Fischer et. al.]
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Integrated Data Analysis Equilibrium

Example:   Counter-current Electron Cyclotron Current Drive (ECCD)

ECCD drives localised on-axis current 
   - Not seen by magnetics (small due to low area of centre)
   - No effect on pressure profile = not seen by kinetic inputs

[R. Fischer et. al.]

Regularised GS solution:

With CDE + Current Drive:
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Integrated Equilibrium vs IMSE

- By comparing by IMSE, can see where IDE predicts more physics than the 'standard' GS solver:
  1) During R-scan
  2) ECRH switch-off 

[R. Fischer et. al.]
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IDE (GS + Current Diffusion/Drive)

CLISTE (GS Solver)

Measurement
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Integrated Equilibrium vs IMSE

- By comparing by IMSE, can see where IDE predicts more physics than the 'standard' GS solver:
  1) During R-scan
  2) ECRH switch-off 
However, there is still physics only seen by diagnostic!

[R. Fischer et. al.]
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Integrated Equilibrium - Sawteeth

- During sawteeth (reconnection), current diffusion not applicable.

[R. Fischer et. al.]
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Integrated Equilibrium - Sawteeth

- During sawteeth (reconnection), current diffusion not applicable.
- Include different sawtooth models in equilibrium code and compare IMSE predictions to measurements.
   - Kadomtsev: Complete reconnection. q0 --> 1. Current outside q=1 surface.
   - Flat-current model (FCM): Current conserved outside q=1, flat current density inside.

[R. Fischer et. al.]
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Integrated Equilibrium - Sawteeth

- During sawteeth (reconnection), current diffusion not applicable.
- Include different sawtooth models in equilibrium code and compare IMSE predictions to measurements.
   - Kadomtsev: Complete reconnection. q0 --> 1. Current outside q=1 surface.
   - Flat-current model (FCM): Current conserved outside q=1, flat current density inside.

[R. Fischer et. al.]

Current redistribution similar to seen in Δjφ images.

Difference between models requires absolute  jφ ~ 0.02 MA m-2  -->   dθ/dR ~ 0.01ο  (3 cm-3)
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Integrated Equilibrium vs IMSE - Sawteeth

Required precision is so high, many other factors become important:

[R. Fischer et. al.]
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Integrated Equilibrium vs IMSE - Sawteeth

Required precision is so high, many other factors become important:

[R. Fischer et. al.]
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At some locations, ΔEr during sawtooth dominates measurement:
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Shafranov shift: 
     Movement of plasma axis with pressure.

Integrated Equilibrium vs IMSE - Sawteeth

Required precision is so high, many other factors become important:

[R. Fischer et. al.]
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Shafranov shift: 
     Movement of plasma axis with pressure.
      (including redistribution of fast-ions from neutral beam)

Integrated Equilibrium vs IMSE - Sawteeth

Required precision is so high, many other factors become important:

[R. Fischer et. al.]
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but...   
     we now have good agreement between full integrated model and IMSE measurements for sawtooth evolution in θ.

Integrated Equilibrium vs IMSE - Sawteeth

Required precision is so high, many other factors become important:

[R. Fischer et. al.]
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but...   
     we now have good agreement between full integrated model and IMSE measurements for sawtooth evolution in θ.

Integrated Equilibrium vs IMSE - Sawteeth

Required precision is so high, many other factors become important:

[R. Fischer et. al.]

- This is where we are - 'the state of the art ... science'
What next?

IMSE: 
- Improve calibration   
   systematics,.

IDE: 
- Modeling of effects.
- Tolerance to calibration 
systematics.
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but...   
     we now have good agreement between full integrated model and IMSE measurements for sawtooth evolution in θ.

Integrated Equilibrium vs IMSE - Sawteeth

Required precision is so high, many other factors become important:

[R. Fischer et. al.]

- This is where we are - 'the state of the art ... science'
What next?

IMSE: 
- Improve calibration   
   systematics,.

IDE: 
- Modeling of effects.
- Tolerance to calibration 
systematics.

Converge
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Summary
- Introduction
   - Flux surfaces and current profiles
   - Magnetic equilibrium 
   - Bayesian analysis

- Bayesian equilibrium
   - Current-tomography
   - Current tomography + Grad-Shafranov
   - L-Mode reconstructions
   -  H-Mode results

- Internal measurements
   - Motional Stark effect.
   - Coherence Imaging
   - Imaging MSE
   - Direct jφ imaging.

- Integrated Data Analysis    
   - Current diffusion
   - Imaging MSE comparison
   - Sawtooth models

- Rigorous determination of uncertainty
- Too computationally intensive for H-mode
- Need internal measurements!

-Excellent internal measurements.
- Good dynamics from approximate derivation of Δjφ
- Calibration very difficult to required accuracy.
- Need to include in equilibrium

- Excellent tool for practical analysis with available data.
- Current diffusion provides realistic model of missing 

information when data incomplete.
- Sawtooth models in good agreement with IMSE evolution.
- Still need to converge IDE+IMSE to arrive at an absolute q.

30 / 45



Max-Planck Institut
für Plasmaphysik
Greifswald / Garching

ASDEX
Upgrade

Bayesian Inference

A simple example with electron density:

Physics model: 

Parameters:

Forward model:

Point measurement Dp  
(e.g. Thomon Scattering)

Line measurement Di  
(e.g. Interferometry)
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Bayesian Inference

What should we take for a prior:
   - Any n0 and q is equally likely:

P(D | µ) for a single lie integral:

P(D | µ) for 5 line integrals: P(D | µ) for 5 line integrals
 and 1 point measurement:

'Samples' = Profiles at points drawn 
  from posterior distribution.
             Fully represents uncertainties
              and degeneracy
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Forward modelling and Bayesian Inference

Magnetic Field Flux

Flux Loops

Pickup Coils

Saddle Loops

Te

ne

Te profile

ne profile

Te in 3D

ne in 3D

currents

Interferometry

Thomson Scattering

Fluxloop observations

Polarimetry

Interferrometry Data

Thomson Data

Polarimetry Data

Parameters
(Including prior distribution)

calibration

calibration

P( Te, Ne, J | Data ) ~ P( D | Ne, Te, J ) P( Te, Ne, J)Bayes Theorem:

Model (Simplified)

Practically: Solve and explore using external algorithms:

Linear Gaussian Solver
(Best fit and PDF
covariance)

P( Model )

Genetic Algorithms
(Non-linear best fit)

Metropolis Hastings
MCMC Non-linear Exploration:
--> Uncer tai nt y

Separate/Modular code for each operation

Saddle Data

Pickup Data

Likelihood Distributions
(Compare prediction and data
with expected noise)

Minerva framework for Bayesian combined modelling:
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The TS diagnostics provide information on plasma current near LOS.

Plasma current one of the most important and least diagnosed
parameters in Tokamaks.
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IMSE + Current Tomography

 

Put description of AUG coils and some pickups into Minerva so we
can now do Current Tomorgraphy and Bayesian Equilibrium for AUG.

For magnetics only, we have the usual tomography situation:
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IMSE System:
30x30 grid of Bz
measurements.

Just for interest:
30x15 grid of Bz
30x16 grid of Br.
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Each case has 900 measurements at sigma = 10mT.
So difference is only in the type of information.
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Motional Stark Effect Polarimetry
Typical hardware:
  - Temperature/tile tuned interference filter σ
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Motional Stark Effect Polarimetry
Typical hardware:
  - Temperature/tile tuned interference filter 
  - Photo-elastic modulator  (PEM)
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Motional Stark Effect Polarimetry
Typical hardware:
  - Temperature/tile tuned interference filter 
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- Introduces phase shift φ between E and O
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Motional Stark Effect Polarimetry
Typical hardware:
  - Temperature/tile tuned interference filter 
  - Photo-elastic modulator  (PEM)
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Lock-in amplifier- PEMS at ~45° to initial polarisation

- Splits incoming polarisation into E and O waves.
- Introduces phase shift φ between E and O
- Modulates Δφ in time
- E and O waves interfere due to final polariser.
- Modulation of Δφ in time from which θ can be recovered. 
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Coherence Imaging

Some results of neutral Helium flow in the (relatively) cold edge
of MAST:

Raw Image:
Helium Flow Velocity:

*With thanks to Scott Silburn, Durham University / CCFE
[S. Silburn et. al. 40th EPS Conf. on plasma phys. 2013]

MAST is a 'spherical' Tokamak.
The torus has a very small major
radius compared to it's minor
radius, but is still a Tokamak.

MAST
Mega Amp Spherical Tokamak,
CCFE, Culham, UK
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Absolute q0 requires absolute dθ/dR
How can we calibrate θ, (or dθ/dR)?

- Run the same plasma with reversed field --> Reversed pitch angle

IMSE - Calibration

Bz

Bφ

Forward
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Bφ
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Absolute q0 requires absolute dθ/dR
How can we calibrate θ, (or dθ/dR)?

- Run the same plasma with reversed field --> Reversed pitch angle
- Also scan axis position to confirm meeting point (magnetic axis)
  agrees with 0 pitch angle.
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Meeting point well predicted by equilibrium:
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Absolute q0 requires absolute dθ/dR
How can we calibrate θ, (or dθ/dR)?

- Run the same plasma with reversed field --> Reversed pitch angle
- Also scan axis position to confirm meeting point (magnetic axis)
  agrees with 0 pitch angle.
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Meeting point well predicted by equilibrium:

Systematic features ~ 0.5o / (3 cm-1) !!
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ASDEX Upgrade Programme Seminar, 11 Nov 2015A. Bock 7

Uncertainties in j/q without internal measurements

#32232 3.0s
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ASDEX Upgrade Programme Seminar, 11 Nov 2015A. Bock 8

Uncertainties in j/q 1 MSE LOS

#32232 3.0s
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ASDEX Upgrade Programme Seminar, 11 Nov 2015A. Bock 12

Uncertainties in j/q 12 IMSE LOS

#32232 3.0s
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Status: iMSE fit (2)

● 16 iMSE channels appear reasonable, but large q0 uncertainty
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Status: iMSE fit (3)

● 16 iMSE channels appear reasonable, but large q0 uncertainty

● 36 iMSE channels not conclusive

Note: q0 estimation is the most challenging problem in current profile reconstruction!43 / 45


