

Power and particle transport in NBI vs ECRH plasmas

Profiles Topical Group, May 2021

Authors:

O. P. Ford, M. Beurskens, S. Bozhenkov, S. Lazerson

Contributors:

L, Vanó, H. Smith, Y. Turkin, P. McNeely, N. Rust, D. Hartmann, A Langenberg, D. Zhang, N. Pablant²,

G. Fuchert, E. Pasch, T. Kremeyer, C. Beidler, S. Bannmann, V.Perseo,

(... Interferometry, Diamagnetic Loop, ECRH ...)

*: Max-Planck Institut für Plasmaphysik, Greifswald, Germany 2: PPPL

. . .

Background:

- Gas fuelled ECRH dischages:
 - Flat density profiles
 - T_i clamped at 1.5keV because:
 - 1) Poor coupling at low collisionality,
 - 2) Turbulence and stiff profiles
 - 3) Te/Ti exacerbates turbulence
 - Low and flat impurity densities
- Pellets:
- Core fuelling --> peaked density profiles
- Turbulence supression. Q_i reduced to O(neoclassical)
 - --> Highest observed T_i

Great but.... Only seen *after* rapid pellets. Can steady state pellets give peaked density? If not, what can we do?

NBI gives continuous core fuelling and ion heating. Can NBI provide a route to improved performance (higher T_i)?

Note: I focus here on high T_i , not β , so I am ignoring T_e 'performance'.

How does global T_i look?

- Most shots are ECRH + NBI.
- T_i still around clamping limit, maybe slightly higher but generally not as high as post-pellets plasmas.
- Some of the highest T_i are at lower T_e .

Global view

Global confinement generally lower for NBI compared to ECRH due to lower efficiency of NBI heating physics:

- 1) Significant fast-ion loss fraction >> ECRH stray radiation
- 2) Power deposition profile much broader

Global view

Global confinement generally lower for NBI compared to ECRH due to lower efficiency of NBI heating physics:

- 1) Significant fast-ion loss fraction >> ECRH stray radiation
- 2) Power deposition profile much broader

Global view

Global confinement generally lower for NBI compared to ECRH due to lower efficiency of NBI heating physics:

- 1) Significant fast-ion loss fraction >> ECRH stray radiation
- 2) Power deposition profile much broader

Confinement vs Transport

5 Transport [06]

Global confinement generally lower for NBI compared to ECRH due to lower efficiency of NBI heating physics:

- 1) Significant fast-ion loss fraction >> ECRH stray radiation
- 2) Power deposition profile much broader

To consider *transport* rather than *confinement*, examine adjust to e.g. $P_{total} = P_{ECRH} + 60\% P_{NBI}$:

6/39

Confinement vs Transport

Within the NBI shots, ECRH >= 1MW quickly degrades performance. ECRH < 1MW shots show some density peaking.

- Pure NBI discharges show core density and impurity peaking (almost all of the time!).
- Strong density rise occurs
 - ho_{eff} < 0.5.
 - $t > t_{onset}$, which varies over 1 2s after NBI in different shots. No apparent correlation of t_{onset} with external events.

- Pure NBI discharges show core density and impurity peaking (almost all of the time!).
- Strong density rise occurs
 - ho_{eff} < 0.5.
 - $t > t_{onset}$, which varies over 1 2s after NBI in different shots. No apparent correlation of t_{onset} with external events.

- Pure NBI discharges show core density and impurity peaking (almost all of the time!).
- Strong density rise occurs
 - ho_{eff} < 0.5.
 - $t > t_{onset}$, which varies over 1 2s after NBI in different shots. No apparent correlation of t_{onset} with external events.

- Pure NBI discharges show core density and impurity peaking (almost all of the time!).
- Strong density rise occurs
 - ho_{eff} < 0.5.
 - $t > t_{onset}$, which varies over 1 2s after NBI in different shots. No apparent correlation of t_{onset} with external events.

- Pure NBI discharges show core density and impurity peaking (almost all of the time!).
- Strong density rise occurs
 - ho_{eff} < 0.5.
 - $t > t_{onset}$, which varies over 1 2s after NBI in different shots. No apparent correlation of t_{onset} with external events.

Pure NBI

Carbon peaking consistent with neoclassical transport for $\rho < 0.5$ and some turbulent diffusion for $\rho > 0.5$. STRAHL simulations [L Vanó]:

Peaking (supressed turbulent diffusion) starts at same onset time of accelerated core electron density peaking (t=2.2s)

9 / 39 ^[12]

Pure NBI - particle transport

10 / 39 [14]

O. Ford

Particle balance:

- Source rate from Beams 3D. Roughly agrees with ADAS beam stopping. No Halo diffusion but not significant.
- NC particle fluxes calculated using NEOTRANSP. Robust to uncertainties: Profiles, Te-Ti, Zeff, Er --> no more than ±20%.
- Ignore gas fuelling and recycling --> Maybe invalid for rho > 0.7

Pure NBI - particle transport

10/39

O. Ford

[14]

Particle balance:

- Source rate from Beams 3D. Roughly agrees with ADAS beam stopping. No Halo diffusion but not significant.
- NC particle fluxes calculated using NEOTRANSP. Robust to uncertainties: Profiles, Te-Ti, Zeff, Er --> no more than ±20%.
- Ignore gas fuelling and recycling -> Maybe invalid for rho > 0.7

2) dn_e/dt decreases, Still insignificant NC flux. --> Increasing anomolous flux

Pure NBI - particle transport

10 / 39 [14]

O. Ford

Particle balance:

- Source rate from Beams 3D. Roughly agrees with ADAS beam stopping. No Halo diffusion but not significant.
- NC particle fluxes calculated using NEOTRANSP. Robust to uncertainties: Profiles, Te-Ti, Zeff, Er --> no more than ±20%.
- Ignore gas fuelling and recycling --> Maybe invalid for rho > 0.7

2) dn_e/dt decreases,
 Still insignificant NC flux.
 --> Increasing anomolous flux

3) dn_e/dt spontaneously increases again.
 --> Anomolous flux reduced significantly

Pure NBI - particle transport

O. Ford

10 / 39 ^[14]

Particle balance:

- Source rate from Beams 3D. Roughly agrees with ADAS beam stopping. No Halo diffusion but not significant.
- NC particle fluxes calculated using NEOTRANSP. Robust to uncertainties: Profiles, Te-Ti, Zeff, Er --> no more than ±20%.
- Ignore gas fuelling and recycling --> Maybe invalid for rho > 0.7

- 2) dn_e/dt decreases,
 Still insignificant NC flux.
 --> Increasing anomolous flux
- 3) dn_e/dt spontaneously increases again.
 --> Anomolous flux reduced significantly
- 4) Flux increases again and $n_{\rm e}$ saturates for rho > 0.5

Pure NBI - particle transport

10 / 39

O. Ford

Particle balance:

- Source rate from Beams 3D. Roughly agrees with ADAS beam stopping. No Halo diffusion but not significant.
- NC particle fluxes calculated using NEOTRANSP. Robust to uncertainties: Profiles, Te-Ti, Zeff, Er --> no more than ±20%.
- Ignore gas fuelling and recycling --> Maybe invalid for rho > 0.7

2) dn_e/dt decreases,
 Still insignificant NC flux.
 --> Increasing anomolous flux

- 3) dn_e/dt spontaneously increases again.
 --> Anomolous flux reduced significantly
- 4) Flux increases again and $n_{\rm e}$ saturates for rho > 0.5
- 5) ECRH starts
- Strong increase in both NC and anomolous
- Flush out of particles in very core

Pure NBI - particle transport

10/39 [14]

O. Ford

Particle balance:

- Source rate from Beams 3D. Roughly agrees with ADAS beam stopping. No Halo diffusion but not significant.
- NC particle fluxes calculated using NEOTRANSP. Robust to uncertainties: Profiles, Te-Ti, Zeff, Er --> no more than ±20%.
- Ignore gas fuelling and recycling -> Maybe invalid for rho > 0.7

- 2) dn_e/dt decreases, Still insignificant NC flux. --> Increasing anomolous flux
- 3) dn_o/dt spontaneously increases again. --> Anomolous flux reduced significantly
- 4) Flux increases again and n_e saturates for rho > 0.5
- 5) ECRH starts
- Strong increase in both NC and anomolous
- Flush out of particles in very core
- 6) Density stabilises with balance of NC and anomolous in core. Strong anomolous at mid-radius to edge.

Pure NBI - particle transport

O. Ford

11 / 39 [16]

Particle balance temporal evolution:

At ECRH switch on, core d^2n_e/dt^2 is consistent with increase of NC flux. i.e. new dn_e/dt matches Γ_{NC} with existing anomolous flux trajectory. ---> how quickly should turbulence react to profiles?

Pure NBI - particle transport

The particle transport change appears in almost all NBI shots with $P_{ECRH} < 1$ MW, at different on-set times. In some cases hard to see in n_e , but very obvious in log(n_c) and almost coincident in time.

No change on any other signals at edge $(T_e, T_i, H_\alpha, P_{rad})$

In some cases ne rises a little at all radii, in others the edge doesn't change.

Most consistent parameter at t_{onset} is $a/L_n = 0.8 \pm 0.05$, but this relies heavily the single red point (#018)

12 / 39 ^[18]

13 / 39

[20]

Pure NBI - Species power balance

For power balance of individual species, we require the collisional power transfer $P_{ei:}$

$$P_{e-i} \approx 38 \cdot n_e^2 \cdot \frac{\left(T_e - T_i\right)}{T_e^{3/2}} \cdot \frac{Z}{A} \left[\frac{kW}{m^3}\right]$$

At $n_e \sim 10^{20} \text{ m}^{-3}$ and T ~1keV and integrating to mid radius:

 $P_{e\text{-}i} \sim 2.6$ MW for every 100eV difference between Te and Ti.

Profiles TG May 2021 OP1.2b NBI results

13/39

[20]

For power balance of individual species, we require the collisional power transfer P_{ei}

$$P_{e-i} \approx 38 \cdot n_e^2 \cdot \frac{(T_e - T_i)}{T_e^{3/2}} \cdot \frac{Z}{A} \left[\frac{kW}{m^3} \right]$$

At $n_e \sim 10^{20} \text{ m}^{-3}$ and T ~1keV and integrating to mid radius: $P_{e-i} \sim 2.6 \text{ MW}$ for every 100eV difference between Te and Ti. Only ~ 0.5MW is available from NBI at mid radius, so

Profiles TG May 2021 OP1.2b NBI results

For power balance of individual species, we require the collisional power transfer P_{ei}

$$P_{e-i} \approx 38 \cdot n_e^2 \cdot \frac{(T_e - T_i)}{T_e^{3/2}} \cdot \frac{Z}{A} \left[\frac{kW}{m^3} \right]$$

At $n_e \sim 10^{20} \text{ m}^{-3}$ and T ~1keV and integrating to mid radius: $P_{e-i} \sim 2.6 \text{ MW}$ for every 100eV difference between Te and Ti. Only ~ 0.5MW is available from NBI at mid radius, so

13/39

[20]

Profiles TG May 2021 OP1.2b NBI results

13/39

[20]

For power balance of individual species, we require the collisional power transfer P_{ei}

$$P_{e-i} \approx 38 \cdot n_e^2 \cdot \frac{|T_e - T_i|}{T_e^{3/2}} \cdot \frac{Z}{A} \left[\frac{kW}{m^3} \right]$$

At $n_e \sim 10^{20} \text{ m}^{-3}$ and T ~1keV and integrating to mid radius: $P_{e-i} \sim 2.6 \text{ MW}$ for every 100eV difference between Te and Ti. Only ~ 0.5MW is available from NBI at mid radius, so

Profiles TG May 2021 OP1.2b NBI results

13/39

[20]

For power balance of individual species, we require the collisional power transfer P_{ei}

$$P_{e-i} \approx 38 \cdot n_e^2 \cdot \frac{|T_e - T_i|}{T_e^{3/2}} \cdot \frac{Z}{A} \left[\frac{kW}{m^3} \right]$$

At $n_e \sim 10^{20} \text{ m}^{-3}$ and T ~1keV and integrating to mid radius: $P_{e-i} \sim 2.6 \text{ MW}$ for every 100eV difference between Te and Ti. Only ~ 0.5MW is available from NBI at mid radius, so

Profiles TG May 2021 OP1.2b NBI results

13/39

[20]

For power balance of individual species, we require the collisional power transfer P_{ei}

$$P_{e-i} \approx 38 \cdot n_e^2 \cdot \frac{|T_e - T_i|}{T_e^{3/2}} \cdot \frac{Z}{A} \left[\frac{kW}{m^3} \right]$$

At $n_e \sim 10^{20} \text{ m}^{-3}$ and T ~1keV and integrating to mid radius: $P_{e-i} \sim 2.6 \text{ MW}$ for every 100eV difference between Te and Ti. Only ~ 0.5MW is available from NBI at mid radius, so

Assumptions like $T_e = T_i$ are assumptions about P_{ei} and lead to Q_e and Q_i values that are not experimental quantities!

Max-Planck Institut für Plasmaphysik	Impurity TG March 2021 OP1.2b NBI results	O. Ford
	Te, Ti, Tz profiles during peakin	g 14 / 39 [31]
Can we recover P _{ei} by clever diagnos	stic analysis now we know $ T_i - T_e $ should be < ~	-50eV
Temperature profiles available: Thomson scattering Te. XICS Argon Tz XICS Te (All CXRS profiles corrected for fine)	CXRS Hydrogen (Halo) Ti CXRS Carbon Tz CXRS Argon Tz (in 1 shot) structure, Zeeman and instrument function, Var	ious methods to correct for PCX)
Generally these are mess of systematic errors:	2500 Multi species/spec <i>T_i</i> a	#20181009.016 3.80s < t < 4.10s Interpolated C_VI (ILS_Green) BGSubtract V3 Autorange prior C_VI (ILS_Green) DualGauss V24 Include PCX C_VI (ILS_Green) DualGauss V25 Interpolated Ar_XVI (AUG2) BGSubtract V30 Autorange prior C_VI (AUG1) DualGauss V3 Include PCX C_VI (AUG1) DualGauss V3
		 Hittidde PCX C_VI (A001) Dualoadss V4 Hydrogen Halo (NIFS_H) All V2 Hydrogen Halo (ILS_Red) All V1 Te (TS) XICS

Impurity TG March 2021	O. Ford
OP1.2b NBI results	
	15 / 39

[38]

 T_e , T_i , T_z profiles

Impurity TG March 2021	O. Ford
OP1.2b NBI results	
	15 / 39

[38]

 T_e , T_i , T_z profiles

time [s]

[38]

15 / 39 ^[38]

It seems like the T_z becomes much higher near very steep gradients.

15 / 39 ^[38]

It seems like the T_z becomes much higher near very steep gradients.

O. Ford

[44]

So what can we say?

- There are no believable cases where $T_i < T_e$, so we probably do not have neoclassical electrons.
- (This would fit with post-pellets plasmas, where we have near beoclassical ions but still very anomolous electrons)
- The ions could easily be completely neoclassical.
- There is no good reason to assume $T_i=T_{e.}$ Any small differences in the heat transport would lead to differences building up radially until P_{ei} compensates it. To assume this, one would need to propose some mechanism to expect an exact $Q_e = Q_e^{NBI} + Q_e^{ECRH}$ and $Q_i = Q_i^{NBI}$ balance.

During the pure NBI phase, only 1.2MW of total power is available by ρ =0.5, so we can have max 45eV difference.

In the NBI+ECRH phase we get an additional 1MW of O2 ECRH power and can easily now have higher T_e in $\rho < 0.2$.

And in fact, the data tells us this...

Examining the pinned measurement time traces again:

17/39

[46]

We can go back to the original data (no pinning, no adjustment) and just average everything: all Carbon CXRS + hydrogen Halo + XICS argon.

18/39

[48]

Pure NBI - Species power balance

We can go back to the original data (no pinning, no adjustment) and just average everything: all Carbon CXRS + hydrogen Halo + XICS argon.

We can go back to the original data (no pinning, no adjustment) and just average everything: all Carbon CXRS + hydrogen Halo + XICS argon.

O. Ford

18 / 39 ^[48]

We can go back to the original data (no pinning, no adjustment) and just average everything: all Carbon CXRS + hydrogen Halo + XICS argon.

18 / 39 ^[48]

We can go back to the original data (no pinning, no adjustment) and just average everything: all Carbon CXRS + hydrogen Halo + XICS argon.

18 / 39 ^[48]

Profiles TG May 2021 OP1.2b NBI results

Pure NBI - Species power balance

[Beurskens]

0.3

0L 0

82

0.3

r [m]

0.5

0.1

19 / 39 ^[52]

Profiles TG May 2021 OP1.2b NBI results

Pure NBI - Species power balance

O. Ford

19 / 39 ^[52]

r [m]

At low density such a barrier would be very significant, but we would not get the a/L_{ne} required to create it.

- Intermediate conclusions from profile analysis:

1) We can not separate Q_i and Q_e at high collisionality without improvements to the CXRS, XICS and TS analysis! It needs ~50eV accuracy, which is hard (but not impossible).

2) Q_i at ρ = 0.5 is somewhere between NC value and Q_i^{NBI} . It is unlikely to have taken a large fraction of the ECRH power.

3) Fully supressed ion turbulence barrier is very possible at ρ =0.5, conincident with the apparent particle transport barrier.

However, this is not useful, since all power is transferred to electrons, so that $T_i = T_e$.

--> In high collisionality plasmas, the species with fastest heat transport completely determines both temperatures and stored energy.

20/39

[53]

Over multiple shots, a pattern emerges:

#34: A) Pure NBI phase builds up density gradient.

O. Ford

Over multiple shots, a pattern emerges:

#34: A) Pure NBI phase builds up density gradient. B) ECRH is added to take advantage, a/L_{ne} drops only a little.

22 / 39 [70]

Over multiple shots, a pattern emerges:

#34: A) Pure NBI phase builds up density gradient. B) ECRH is added to take advantage, a/L_{ne} drops only a little.
 #39: A) Initially high ECRH. B) Power step down to 1MW, density gradient develops, temperature gradient develops.

Over multiple shots, a pattern emerges:

#34: A) Pure NBI phase builds up density gradient. B) ECRH is added to take advantage, a/L_{ne} drops only a little.
 #39: A) Initially high ECRH. B) Power step down to 1MW, density gradient develops, temperature gradient develops.

Over multiple shots, a pattern emerges:

#34: A) Pure NBI phase builds up density gradient. B) ECRH is added to take advantage, a/L_{ne} drops only a little. #39: A) Initially high ECRH. B) Power step down to 1MW, density gradient develops, temperature gradient develops. #43: Pure NBI - density gradient builds but power is low, so gyro-Bohm like transport alone limits $\nabla T i$.

Over multiple shots, a pattern emerges:

#34: A) Pure NBI phase builds up density gradient. B) ECRH is added to take advantage, a/L_{ne} drops only a little. #39: A) Initially high ECRH. B) Power step down to 1MW, density gradient develops, temperature gradient develops. #43: Pure NBI - density gradient builds but power is low, so gyro-Bohm like transport alone limits ∇Ti . #55: Initially high ECRH like #39 but at less power.

22 / 39 ^[70]

Over multiple shots, a pattern emerges:

#34: A) Pure NBI phase builds up density gradient. B) ECRH is added to take advantage, a/L_{ne} drops only a little.

#39: A) Initially high ECRH. B) Power step down to 1MW, density gradient develops, temperature gradient develops.

#43: Pure NBI - density gradient builds but power is low, so gyro-Bohm like transport alone limits *∇Ti*.

#55: Initially high ECRH like #39 but at less power.

#18: Pure NBI. Density gradient builds up late and power is not added.

O. Ford

22 / 39 ^[70]

Over multiple shots, a pattern emerges:

#34: A) Pure NBI phase builds up density gradient. B) ECRH is added to take advantage, a/L_{ne} drops only a little.

#39: A) Initially high ECRH. B) Power step down to 1MW, density gradient develops, temperature gradient develops.

#43: Pure NBI - density gradient builds but power is low, so gyro-Bohm like transport alone limits *∇Ti*.

#55: Initially high ECRH like #39 but at less power.

#18: Pure NBI. Density gradient builds up late and power is not added.

This can also be seen in the global view:

23 / 39 ^[72]

This can also be seen in the global view:

23 / 39

[72]

This can also be seen in the global view:

23 / 39

[72]

This can also be seen in the global view:

23 / 39 [72]

This can also be seen in the global view:

- All higher a/L_{ne} discharges with a little ECRH move up towards post-pellets HP plasmas.

This can also be seen in the global view:

- All higher a/L_{ne} discharges with a little ECRH move up towards post-pellets HP plasmas.

This can also be seen in the global view:

- All higher a/L_{ne} discharges with a little ECRH move up towards post-pellets HP plasmas.
- Low *P*, low *n_e* shots without NBI show the same behaviour denisty peaking most likely a transport effect and not from NBI fuelling.

Particle transport (in pure NBI only):

- Low net particle flux initially gives slow rise of core density.
- At $a/L_{ne} \sim 0.8$ anomolous particle flux at/inside rho=0.5 reduces dramatically --> density peaking + impurity accumulation.

Heat transport:

- Heat transport at low a/L_{ne} is consistent with high stiffness in ECRH-only plasmas.
- Heat transport at high a/L_{ne} is consistent with gyro-Bohm scaling.
- Pure NBI plasmas are limited by the input power --> More power initially gives higher Ti.
- In pure NBI plasmas, the radiation from impurity accumulation eventually kills the plasma.
- Too much power (at least with ECRH > \sim 1.2MW) reduces a/L_{ne} and heat transport degrades dramatically.
- There could be a strong Q_i barrier at mid-radius... interesting, but probably not very useful.
 - --> Should we invest resources to measure it?

General:

- It *might* be possible to slowly increase the NBI and ECRH power together, such that $\eta_i = (a/L_{Ti} / a/L_{ne}) \sim 1.75$ is maintained and to follow this path *towards* the post-pellet plasma performance.
- Is it most critically important to understand when the extra ECRH power decreases a/L_{ne} .
- --> Study the turbulent particle transport!

24 / 39 ^[80]

O. Ford

Open questions

25 / 39 ^[82]

- What causes the low particle flux at ρ < 0.5 in (some) NBI discharges? Is this really density gradient?
- Is there really an ITB in Qi? (Although we probably shouldn't care)
- Why does high ECRH increase the core particle flux?
- What is the 'right amount' of ECRH to flush out impurities and control density rise?
 - If the ECRH needed to control impurities is already enough to lower a/Lne, then we cannot win.
- What happens when we add more NBI?
 - If the particle fluxes do not increase: Add more ECRH, but this ok, because density gradient will remain. Great!
 - If particles fluxes increase: No way to add power without losing density gradient.

Study other things: beam current, momentum etc

Experiments for OP2:

Fine ECRH power steps at several NBI power steps to empirically map:

- Density peaking and flattening with ECRH
- Impurity explusion
- Profile stiffness at higher ECRH power and behaviour on the border.

Impurity TG March 2021 OP1.2b NBI results

Te, Ti, Tz profiles

26 / 39 II

Generally visible:

- Behaviour of T_e and T_i (hydrogen) mostly agree --> Expected as (Ti-Te) > ±50eV will lead to P_{ei} >> available power.
- All temperatues agree outside gradient region, and in the one case where peaking does not occur (#20181009.018)
- XICS Tz in very core seems to agree with Te,Ti, but maybe shows similar higher Ti in steepest gradient region near mid-radius.
- Passive CX is a big complication, but the doesn't quite seem to fit.
 e.g. one would expect the interpolated subtraction to work near end of NBI.

O. Ford

Over multiple shots, a pattern emerges:

#34: A) Pure NBI phase builds up density gradient. B) ECRH is added to take advantage, a/L_{ne} drops only a little.

#39: A) Initially high ECRH. B) Power step down to 1MW, density gradient develops, temperature gradient develops.

#43: Pure NBI - density gradient builds but power is low, so gyro-Bohm like transport alone limits *∇Ti*.

#55: Initially high ECRH like #39 but for some reason same Te, Ti, n_e at less power...?

#18: Pure NBI. Density gradient builds up late and power is not added.

...

. . .

26 / 39 II

