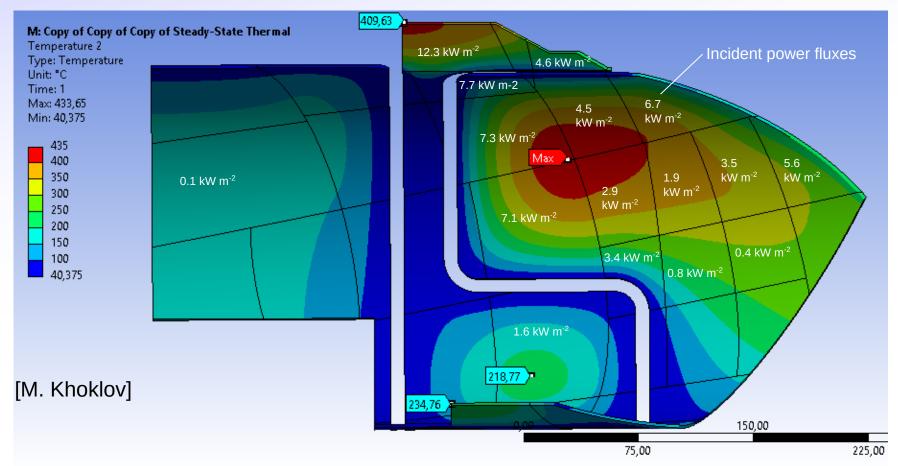


AEM21

- Thermal calculation with free floating pot and mirror shows both rising to 200'C in steady state radiation exchange.
- Probably too much heat exchange from pot to port.
- 200'C on mirror is acceptable, although lower would be better for optics if easily possible.

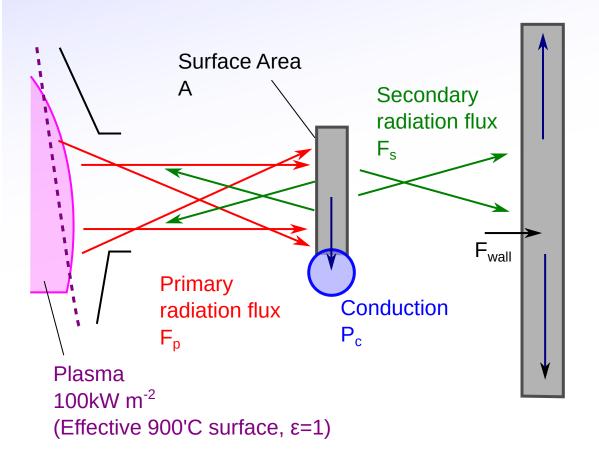


AEM21 Conductive analysis

Steady-state calculation using only incident radiation and conduction (no emitted radiation):

These calculated temperatures would radiate more than the incident power. (Assuming $\varepsilon \sim 0.3$ for SS) e.g.

7.3 kW m⁻² --> 390°C


4.5 kW m⁻² --> 314°C

With conduction to water cooling too, temperatures should lower.

Thermal balance

The steady-state temperature of a structure in vacuum can be found from the balance of heat flux to/from the surface:

Absorbed primary power:

$$P_p = \varepsilon_a F_p A$$

 $\epsilon_{a,e} = emissivity_{(absorbed, emitted)}$

Radiated secondary power:

$$P_s = F_s 2 A$$

 $F_s = \sigma \epsilon_e T^4$

 σ = Stephan Boltzmann's constant

Steady state power balance (no cooling)

$$P_p = P_s$$

$$\varepsilon_a F_p A = 2A \sigma \varepsilon_e T^4$$

$$T = (\frac{1}{2} F_p (\varepsilon_a/\varepsilon_e) / \sigma)^{1/4}$$

Emissivity

Strong dependence on relative emissivity of absorbtion and re-radiation.

Best case: Plasma radiation as black-body: $\varepsilon_a/\varepsilon_e = 1$ (Independent of emissivity) Worst case:

Plasma radiation in X-Ray / VUV: $\varepsilon_a \sim 1$

Radiation from stainless steel (unpolished): $e_e \sim 0.4$ (Ranges 0.4 - 0.6)

$$---> \epsilon_a/\epsilon_e < 3$$

$$T = (\frac{1}{2} F_p (\epsilon_a/\epsilon_e) / \sigma)^{1/4}$$

	$\epsilon_{\rm a}/\epsilon_{\rm e}=1$		ε	$_{\rm \epsilon a}/\epsilon_{\rm e}=3$	
F_{p} [W m ⁻²]	T [°C]	F_{wall} [W m ⁻²]	T [°C]	F _{wall} [W m ⁻²]	
100	700	50	1000	300	
50	550	25	800	150	
20	400	10	600	60	
10	300	5	450	30	
5	200	2.5	350	15	
1	50	0.5	150	3	