

B: Steady-State Thermal Temperature 2 Type: Temperature Unit: "C Time: 1

Max-Planck Institut für Plasmaphysik

W7X CXRS on NBI. Design **Review AEA21 Immersion Tube** QSK / P122 O. Ford

AEM21

- Thermal calculation with free floating pot and mirror shows both rising to 200'C in steady state radiation exchange.
- Probably too much heat exchange from pot to port.
- 200'C on mirror is acceptable, although lower would be better for optics if easily possible.

AEM21 Conductive analysis

Steady-state calculation using only incident radiation and conduction (no emitted radiation):

These calculated temperatures would radiate more than the incident power. (Assuming $\epsilon \sim 0.3$ for SS)

e.g.

```
7.3 kW m<sup>-2</sup> --> 390°C
```

```
4.5 kW m<sup>-2</sup> --> 314°C
```

With conduction to water cooling too, temperatures should lower.

Thermal balance

The steady-state temperature of a structure in vacuum can be found from the balance of heat flux to/from the surface:

Absorbed primary power: $P_p = \epsilon_a F_p A$

 $\epsilon_{a,e} = emissivity_{(absorbed, emitted)}$

Radiated secondary power: $P_s = F_s 2 A$ $F_s = \sigma \epsilon_e T^4$

 σ = Stephan Boltzmann's constant

Steady state power balance (no cooling) $P_p = P_s$ $\epsilon_a F_p A = 2A \sigma \epsilon_e T^4$ $T = (\frac{1}{2} F_p (\epsilon_a / \epsilon_e) / \sigma)^{1/4}$

Max-Planck Institut für Plasmaphysik QSK / P122 O. Ford

Emissivity

Strong dependence on relative emissivity of absorbtion and re-radiation.

Best case: Plasma radiation as black-body: $\epsilon_a/\epsilon_e = 1$ (Independant of emissivity) Worst case:

Plasma radiation in X-Ray / VUV: $\epsilon_a \sim 1$

Radiation from stainless steel (unpolished): $e_e \sim 0.4$ (Ranges 0.4 - 0.6)

---> $\epsilon_a/\epsilon_e < 3$

$T = (\frac{1}{2} F_p (\epsilon_a / \epsilon_e) / \sigma)^{1/4}$				
	$\epsilon_{\rm a}/\epsilon_{\rm e} = 1$		$\epsilon_{\rm ea}/\epsilon_{\rm e}=3$	
F_{p} [W m ⁻²]	T [°C]	F _{wall} [W m⁻²]	T [°C]	F _{wall} [W m ⁻²]
100	700	50	1000	300
50	550	25	800	150
20	400	10	600	60
10	300	5	450	30
5	200	2.5	350	15
1	50	0.5	150	3