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W7-X Diagnostics
 Already too many to cover in one talk. Almost all already installed and operated in OP1.2:

Langmuir probes
Divertor thermography
Divertor calorimetry
Divertor gas Injection
Neutron counters
Single channel dispersion interferometer
ECRH stray radiation diagnostics
ECRH infrared diagnostics
Video cameras
NBI heat-shield thermography
NBI neutraliser spectroscopy
Neutral gas pressure
Thomson Scattering
Laser blow-off
ECE radiometer
ECE Michelson interferometer
TESPEL impurity pellet injection
XMCTS soft X-ray camera
Visible divertor spectroscopy
Charge exchange recombination spectroscopy
Gas-puff imaging
Collective thomson scattering
Doppler reflectometry
Flux surface measurements
Penning gauges
Magnetic equilibrium diagnostics

Bolometry
Alkali-beam
X-Ray imaging crystal spectrometer
High resolution X-Ray spectrometer
Pulse height analysis X-Ray spectrometer
Carbon/oxygen monitor
Zeff/Bremsstrahlung
Multipurpose manipulator (Mutiple heads)
Correlation reflectometry
Profile reflectometry
Coherence imaging spectroscopy
H-alpha video
H-alpha filterscopes
Phase contrast imaging
Mirnov Coils
HEXOS overview spectrometer
Fast ion loss detector
Beam Emission Spectroscopy
Fast Ion D-Alpha
Passive CX / visible spectroscopy

Neutral Partical Analyzer
Laser Induced Flouresence
Divertory Bolometry
Multichannel Interferometer
Heavy ion veam probe

Planned
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ITER relevance for diagnostics

W7-X: An optimised Stellarator 

 
 

 
 

[J. Nührenberg PPCF 52 124003 2010 ]

Wendelstein 7-X: 'Quasi-isodynamic' Stellerator configuration
- Trapped particles drift along constant |B|
- Magnetic configuration chosen to best confine trapped orbits.

|B|

Steady-state operation
with superconducting coils

Magnetic field optimisation

 
Missions:
  - Build Wendelstein 7-X to the required precision.
  - Verify construction by showing good vacuum flux surfaces.
  - Demonstrate operation of 'Island-divertor' 
  - Confirm optimisation of neoclassical confinement - is it at Tokamak level?
  - Show sufficient confinement of fast-ions.
  - Demonstrate steady-state operation at a relevant plasma β.
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WENDELSTEIN 7-X

 
 

 
 Steady-state operation requires steady-state coils --> Super-conducting --> Even more complexity!

After a lot of R&D, the final design of W7-X was complete:
 

Plasma volume ~30m³

<R> = 5.5m

<a> = 0.55m

Triangular 
plane

'Bean'
plane

W7-X Construction
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WENDELSTEIN 7-X

 
 

 
 

 

Targets 
(10 MW m-2)

Baffles
(1 MW m-2)

Island Divertor:
  Island chain at plasma edge functions like a Tokamak divertor to bring highest heat-
loads to special target plates, away from the plasma edge.
 

W7-X Construction

ITER-level heat loads in steady-state.
... (but graphite for forseeable future).
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WENDELSTEIN 7-X

 
 

 
 Vacuum Vessel

Vacuum Vessel:
  Volume: 84m³ 
  Surface area: ~200m²

W7-X Construction
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WENDELSTEIN 7-X

 
 

 
 Magnetic Coils

- Three campaigns of expeince with Superconducting coils
   in a large fusion experiment.
- Some issues with insulation and Paschen tests before last
   campaign but otherwise operating well.

Super-conducting coils:
 
50 complex non planar coils create the standard 
optimised magnetic configuration.
 
20 planar coils allow adjustment of plasma 
position and rotational transform.
 
 Non-superconducting coils:

 
10 control/sweep coils for 
modifying the edge and moving 
the divertor strike points.
 
 

W7-X Construction
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WENDELSTEIN 7-X

 
 

 
 Support structure:

  

Support structure required to support
  coils in position to  ~mm precision 
  while withstanding ~100t forces.

W7-X Construction
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WENDELSTEIN 7-X

 
 

 
 Ports and Cryostat

253 ports of wide range of    shapes
and sizes for feed-throughs and 
diagnostics.

Cryostat:
  Liquid helium cooling for all
   superconducting coils.
 

Complete construction 735t 
   with 435t cold mass.

Ports: 

W7-X Construction
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W7-X Operational Phases
 

OP1.1:  Limiter phase - 4MJ
   - 5 Graphite inboard limiters.
   - No tiles protecting the inner wall.
   - Generally high Te, low Ti plasmas of ~few seconds.
   - Limited diagnostic and heating systems.
 
 

- Steady-state operation is a long term goal. 10MW/m² 'high heat flux' divertor took longer to construct.
 

Steady-state preparation

 
 

 
2016 2017 2018 2019 2020

OP1.1 OP1.2a

(Plan as in Jan 2019)

OP2.0,  2.1,  2.2...OP1.2b

2021

Poloidal 
Limiter Unprotected 

copper 
mounting
points
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OP1.1:  Limiter phase - 4MJ
   - 5 Graphite inboard limiters.
   - No tiles protecting the inner wall.
   - Generally high Te, low Ti plasmas of ~few seconds.
   - Limited diagnostic and heating systems.
 
OP1.2: Test divertor phase - 200MJ
   - Inertially cooled 'test' divertor unit (TDU)
   - Water cooled heat shield tiles and panels.
   - Pulse energy up to 200MJ, 100 seconds. Max power ~6MW.
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W7-X Operational Phases
 

OP1.1:  Limiter phase - 4MJ
   - 5 Graphite inboard limiters.
   - No tiles protecting the inner wall.
   - Generally high Te, low Ti plasmas of ~few seconds.
   - Limited diagnostic and heating systems.
 
OP1.2: Test divertor phase - 200MJ
   - Inertially cooled 'test' divertor unit (TDU)
   - Water cooled heat shield tiles and panels.
   - Pulse energy up to 200MJ, 100 seconds. Max power ~6MW.
   - Many more diagnostic systems 
   - NBI heating.
 
OP2: Steady-state phase. (1GJ, ... 18GJ)
   - Actively cooled high heat flux (HHF) divertor.
   - All wall components water cooled.
   - 10MW for up to 30 minutes, 20MW pulsed.
   - Full steady-state capable diagnostics suite.
 
OP?: Future phases
            - Tungsten wall??

- Steady-state operation is a long term goal. 10MW/m² 'high heat flux' divertor took longer to construct.
 

Steady-state preparation

 
 

 
2016 2017 2018 2019 2020

OP1.1 OP1.2a

(Plan as in Jan 2019)

OP2.0,  2.1,  2.2...OP1.2b

2021

OP1.2: Test Divertor Unit

Poloidal 
Limiter Unprotected 

copper 
mounting
points

OP2: High Heat
Flux divertor5 / 39
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WENDELSTEIN 7-X

Steady-state preparation

 
 

 
2016 2017 2018 2019 2020

OP1.1 OP1.2a

(Plan as in Jan 2019)

OP2.0,  2.1,  2.2...OP1.2b

2021

W7-X OP1.2 (2017/8) Complete
 

- Boronisation --> Higher density limit (problem in OP1.2a)
- 3MW NBI --> densities up to ne ~ 2 x1020 m-3.
- Fully deteached divertor operation

Divertor heat load
(continuous power)

time / s
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WENDELSTEIN 7-X

Steady-state preparation

 
 

 
2016 2017 2018 2019 2020

OP1.1 OP1.2a

(Plan as in Jan 2019)

OP2.0,  2.1,  2.2...OP1.2b

2021

W7-X OP1.2 (2017/8) Complete
 

- Boronisation --> Higher density limit (problem in OP1.2a)
- 3MW NBI --> densities up to ne ~ 2 x1020 m-3.
- Fully deteached divertor operation

1) Pellets + 5MW: Record stellarator confined energy 1.2MJ, (transiently).
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1) 5MW 8x1019m-3

200ms 3.5keV 1.1MJ

Divertor heat load
(continuous power)

time / s
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WENDELSTEIN 7-X

Steady-state preparation
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WENDELSTEIN 7-X

Steady-state preparation
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W7-X OP2 (2021+) Plans
 Primary objective of OP2:

  - Demonstrate long-pulse operation at high beta (~5%).
              10MW ECRH Power,      30min discharges.

    --> Up to 10MW m-2 continuous heat load to divertor (without detachment)

- Steady-state high-heat flux graphite to Copper-Chrome-Zirconium bonded water 
cooled divertor targets.
- Requires online monitor for safety against overheating and delamination of tiles.

OP2: High Heat
Flux divertor
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Visible/Infrared video + Real-time protection

 
Temporary immersion tubes with infrared µ-Bolometer cameras used for OP1.2
Good resolution achieved.
Immersion tube is not long-pulse capable (cooling!)

Infrared data overlaid on to CAD:  (1 of 10 divertors)

10 x high resolution video
   x 30min --> huge data

200TB already for OP1.2

Will need to process in near 
real time. Investigating 
advanced algorithms, 
deep-learning, neutral 
networks etc.
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W7-X OP2 Cooling - Diagnostics
 

MISTRAL:
  Greifswald ECRH stray radiation test facility will be 
   operated again during current shutdown for testing 
   new components/concepts.

GLADIS Test facility in Garching available.
  - 2x 1MW ion sources.
  - Heat fluxes up to 45 MW m-2 
   - Pulses up to 45s.

Primary objective of OP2:
  - Demonstrate long-pulse operation at high beta (~5%).
              10MW ECRH Power,      30min discharges.

--> Up to 100KW m-2 continuous radiative heat load + ECRH stray radiation on all wall components, including diagnostics.
- All diagnostics required to survive continuous heat loads and ECRH stray radiation since conception.
- Many new developments / technologies were required as well as thorough testing. Experience available for ITER.

Steady-state preparation
 

2018 2019 2020
(Plan as in Jan 2019)

OP2.0,  2.1,  2.2...OP1.2b

2021
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Dispersion Interferometer
 - Single channel core interferometer provides average density in real-time 

- Dispersion-interferometer type, (as 'DIP' on ITER)

      - Inherent viabration insensitivity

- Generally running very well.
- Real time FPGA analysis --> Density feedback controller.
- Some issues with unexplained non-ideal behaviour ('non-circularity')
   also with long term environmental drifts --> Long pulse relevance

plasma
filterdoubler

Multichannel Interferometer
 - Planned but currently on-hold due to funding.

 - In-vessel Molybdenum corner-cube retroreflectors
    installed before OP1.2.
     - Problems with manufacturing/polishing 
     - Inspection and testing after OP1.2 shows 
       surface deposition leads to significant reduction 
       in visible reflectivity, but ok at required 5µm.

     - Will continue to monitor in long-pulse operation.
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Thomson Scattering
 - Typical high-resolution Nd:YAG 1064nm system 3/4 Lasers.

Two ITER-relevant developments:
1) Dual-wavelength system to extend Te range and allow some calibration check (reported Nov 2018)

1064 nm 1319 nm

Development work on-going with modelling support from Italy but low-priority project for W7-X due to 
target high-ne, lower-Te plasmas.
 - Mirrors capable of reflecting high energy at both wavelengths.
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Thomson Scattering
 2) OPO-Tunable wavelength laser, in-situ calibration Rayleigh calibration technique.

  Usual calibration: Super-K variable wavelength 
   laser fired at diffuse scattering surface placed in 
   front of optics. Does not include vacuum window.
   (Would anyway not be possible for ITER).
 

  New method: 
   - Fill vessel with gas
   - Fire high energy tunable OPO laser along
     normal laser path
   - Measure Rayleigh scattering with all same 
      optics as normal system.
    
   - First real in-situ tests made at W7-X after OP1.2. 
   - OPO Installed temporarily in torus hall:
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Thomson Scattering
 

First results:
 - very strong stray light but good linear 
    scaling with pressure:
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Thomson Scattering
 Good first results - mostly same curves as diffuse plate calirbation:

Suspected H2O vibrational mode ~970nm
or interference from mirrors?

Diffuse plate

OPO - Rayleigh

Minor issues:
 - Bandwidth limit
 - Noise
 - Wavelength uncertainty
   --> issues near filter edges:

- For now using diffuse plate curves scaled to match Rayleight scattering
 intensity.
- Will be installed for OP2 and further developed / tested.
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Thomson Scattering
 Possible difference...

- Arcing damage to Thomson Scattering window:

 - Arcing from shutter to window surface?
 - Possible that ITO coating for stray radiation was installed on vacuum side?

 --> ECRH stray radiation can be a real problem!
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Electron Cyclotron Emission
 ECE Radiometer:

- 32 channel radiometer
    - Performs well up to cut-off density 1.2 x 1020 m-3.

Plasma
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Electron Cyclotron Emission
 ECE Radiometer:

- 32 channel radiometer
    - Performs well up to cut-off density 1.2 x 1020 m-3.

Calibration

Plasma

ECE Michelson-Interferometer:
  - Development of notch filter for 
    ECRH stray-radiation, difficult for
    broadband system
 - 45ms time resolution (mirror scan).
 - 5GHz resolution --> Poor radial resolution
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Electron Cyclotron Emission
 Possibility to test ITER Compact ECE Michelson Interferometer.

- Presently at ITER-India until delivery to ITER.
- W7-X could be used for full test/demonstrate under realistic conditions of ECRH dominant 
      (e.g. to develop a suitable notch fitler)
- Collaboration with ITER-India - positive from both sides.
- Still investigating funding possibilities for transport/installation at W7-X.
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X-Ray Crystal Spectroscopy
   X-Ray Imaging Crystal Spectrometer 
+ High-resolution X-ray Crystal Spectrometer

  - Operating since OP1.1 very reliably delievering good Ti measurements.
  - Core flow measurements reasonable quality but ...
     - No absolute calibration
     - Calibation variation with environment (~ few oC)
  - In-situ calibration system planned for OP2.
  - Lab comparisons to simulation conducted.
  - Expected accuracy ~ 1km/s
 

To 
W7-X

To detector

Calibration
Source

18 / 39



Max-Planck Institut
für Plasmaphysik

Ti: Crystal X-ray vs Charge Exchange
OP1.2b also included first NBI operation --> CXRS
- Not directly relevant as observation of carbon is easy in Carbon wall machine!
- Using TU/e, FZJ Jülich, TNO prototype high-étendue ITER core spectrometer
    - Not now forseen for ITER, but very good for us!

0.80.60.40.20.0

Te (Thomson Scattering)

Expect Ti = Te

- ~200 - 400eV apparent over-estimation by 
   both X-Ray spectrometers.

- Still under investigation but so far no obvious
explanation. Ti (CXRS)

Ti (XICS)

ρeff
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Beam Emission Spectroscopy (+MSE)

CXRS 'ITER' Spectrometer  Hα channel provides Beam Emission Spectrum:

E1 π+E1 σE1 π-E3 π+E3 σE3 π-

E2 π+E2 σE2 π-

Data

Fit

Hydrogen CX
 + Halo

Cold Hα

Beam Emission

In
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n
si

ty
 /

 a
rb

FIDA

Δλ

Core channel at ne = 1x1020 m-3

Time / s

Wdia

Calculated |B|

Measured |B| C
a
lc

u
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te
d
 |

B
| 

/ 
T

Stark-splitting derived |B| from
BES matches well with expected.
--> Unexpected diagnostic!
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Bolometer
 Measurements of radiated power were critical for last 

campaign OP1.2a due to radiative density limit:

Bolometer design:
- Metal resistive thin-film type.
- Water cooled and encased in graphite to withstand
  long pulse operation.
- Metal mesh and TiO/Al2O3 coating to supress
  expected 20kW m-2 ECRH stray-radiation.
- Collaboration with ITER-bolometer team & IMM 
  (Fraunhofer-Institut for Microtechnology and 
   Microsystems) 
- W7-X as a test-bed of ITER bolometers.

Tomographic reconstruction during detached plasma:
  (Radiation at seperatrix)

Bolometer head

Graphite 
thermal 
protection

Water 
cooled
aperture
plate

CuCrZr water 
cooled detector
holder

Metal mesh
stray ECRH
 protection

[S. Kwak, D. Zhang]

[D. Zhang]
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Diagnostic Residual Gas Analyzer
 - DRGA Prototype analysis chamber developed by US-ITER at ORNL (for divertor pumping DRGA)

- Tested on test setup and linear machine in US.
- Operated on W7-X in last campaign (OP1.2b):

Sampling tube build to connect to W7-X divertor:
   - Simplified but similar to ITER concept.
   - 7m length (ITER = 10m) 
   - Multiple turns.
   - No tritium handling complications

- First demonstration of pressure-reduced long 
      sampling tube.

- Cap:

pumping system

analysis chamber

outer sampling tubegate valve

inner sampling tube

Sampling tube tip

W7-X inner
vacuum vessel

Body

ECRH Stray 
radiation filter

Pressure reduction
orifice plate

Spacer ring

G. Schlisio, Rev. Sci. Instrum.
Submitted March 2018
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Diagnostic Residual Gas Analyzer
 - Linear analytical model for pressure along tube dependent on gas:

- Prediction of time-of-flight ~1-2sec roughly agrees with
     measurements and with ITER design requirement.
- Different TOFs needs to be deconvolved to interpret relative
      time evolution of gases.
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- Magnetic field effect also checked:
   - 6mT W7-X field at DRGA position.
   - 2-layer µ-metal shielding was insufficient 
       (agrees with ORNL test findings)
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Submitted March 2018
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Diagnostic Residual Gas Analyzer
 - Useful plasma results obtained:

e.g. during divertor detachment program:

- Not corrected for significant |B| effect.
- Time behaviour as expected from TOF calculations.

- Wide range of trace gases can be detected.

- Will now be installed also for OP2.1 (next campaign)

− 60 − 40 − 20 0 20 40 60

0

2

4

E
C

R
H

 t
o

ta
l 

p
o

w
e

r 
[M

W
]

H
2

 
a

s 
in

p
u

t
(a

.u
.) a)

ECH power

H2 inpu)

− 60 − 40 − 20 0 20 40 60

10− 11

10− 9

10− 7

p
a

r)
ia

l 
p

re
((

u
re

 [
m

b
a

r] b)

2u
1u
36u

17u

16u

40u
4u

14u

15u

t im e after plasm a start  [s]

− 60 − 40 − 20 0 20 40 60

10− 8

10− 6

10− 4

)o
)a

l 
p

re
((

u
re

 [
m

b
a

r] c)

Subdiver)or

DRGA

Σm pm

− 60 − 40 − 20 0 20 40 60
t im e after plasm a start  [s]

0

1

2

3

4

lin
e

 i
n

te
n

si
t−

 [
a

.u
.] d)

20181017.25

Valve
test

To
ta

l p
re

ss
ur

e
 / 

m
ba

r

P
ar

tia
l p

re
ss

ur
e 

/ m
ba

r

Plasma

G. Schlisio, Rev. Sci. Instrum.
Submitted March 2018

24 / 39



Max-Planck Institut
für Plasmaphysik

Coherence Imaging Spectropscopy
 (a.k.a 'Flow Monitor')

- 2 CIS Systems operated at W7-X over OP1.2a+b
- Calibration with OPO tunable laser
  - Good experience with calibration when laser 
     works. (Pushing stability development at supplier)

- Measurements made in Carbon, Helium, Hydrogen

Vertical view:Toroidal view:
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Coherence Imaging Spectropscopy
 - Calibrated flow images reveal counter-propargating flows expected due to island/divertor geometry.

- High frictional coupling of measured C flows to main ion SOL flows.

Prediction (EMC3-EIRENE)MeasurementCAD
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Coherence Imaging Spectropscopy
 - Calibrated flow images reveal counter-propargating flows expected due to island/divertor geometry.

- High frictional coupling of measured C flows to main ion SOL flows.

Prediction (EMC3-EIRENE)

ASDEX Upgrade CIS:

- IPP Greifswald also operating CIS at ASDEX Upgrade 
   - Similar view as ITER Flow Monitor.
   - Metal walls and possible reflection problems as ITER.
   - Neutral Hydrogen flow measurements show promise 
         as proxy to bulk ion flow.
   - W7-X CIS Instrument (higher performance) used in next 
      weeks for new measurements at AUG, including 
      calibration laser. 
         --> Assist ITER detailed design.

Tungsten
Reflections? 

MeasurementCAD
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Summary
 

W7-X 'Test Divertor' campaign OP1.2 now complete.
 - Very many diagnostics have been operated sucessfully, several with particular ITER relevance, some
    as direct ITER prototypes.

 - W7-X now preparing for OP2 - full actively cooled long pulse operation from 2021 onwards...

- We are open to ideas and proposals how we can best support ITER diagnostics work.

Thanks for listening!

Steady-state preparation

 
 

 
2016 2017 2018 2019 2020

OP1.1 OP1.2a

(Plan as in Jan 2019)

OP2.0,  2.1,  2.2...OP1.2b

2021
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Neutral Gas Manometers
 The ASDEX-Upgrade type neutral gas manometers were are also under test in the first campaign but 

showed failure after several hours cumulative operation.

- OP1.1: Tungsten filaments at 15-20A
           Operated 4, two degraded and one failed completely 
            at ~5h total operational time.

- Prototype with LaB6 crystal instead of filament.
Tested in 3T magnet ahead of installation for OP2.
Only 1 - 2A required for 300µA electron current at 3T.
Goal is to show robust operation over long-pulses.

LaB6 Emitter
(cathode)

Control electrode
Ion collector

Anode

[Wenzel  et al., RSI 89, 033503 (2018)]
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WENDELSTEIN 7-X

W7-X OP1.2 (2018) Complete
 

OP1.2: Test Divertor Unit

Highlights of OP2.1

- OP1.2a: Limited densities due to radiative density limit.
- OP1.2b: Boronisation allowed operation to high densities 
             (ne ~ 1.8 x 1020 m-3) with up to 6MW ECRH heating.

- Full detached divertor operation:

Divertor heat load

time / s
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WENDELSTEIN 7-X

Stellarator Optimisation

 
 

 
Trapped particles precess 
toroidally because |B| is axi-
symmetric.
 
 
 
 
 
 
 

Poor neoclassical 
confinement due to loss 
of trapped particles.

Optimised Stellarator: Create a field with a quasi-symmetry of |B| in some direction:

Quasi-axisymmetric
(NCSX: National Compact 
Stellarator Experiment)

Quasi-helically symmetric:
(HSX: Helically Symmetric 
Experiment)

Quasi-isodynamic:
Mixed symmetry chosen to 
minimise bootstrap current.
(Wendelstein 7-X)

Tokamak: 
 

|B| / T

|B|/B

[J.H.E. Proll PPCF 58 1 2016]

[A. Werner]

Classical Stellarator:
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W7-X: An optimised Stellarator 

 
 

 
 

[J. Nührenberg PPCF 52 124003 2010 ]

Optimisation of W7-X:
     1. Feasible modular coils (no toroidal conductors)
     2. Good, nested magnetic surfaces
     3. Good finite-β equilibria
     4. Good MHD stability
     5. Small neoclassical transport
     6. Small bootstrap current
     7. Good confinement of fast particles
 

 
Missions:
  - Build Wendelstein 7-X to the required precision.
  - Verify construction by showing good vacuum flux surfaces.
  - Confirm optimisation of neoclassical confinement - is it at Tokamak level?
  - Show sufficient confinement of fast-ions.
  - Demonstrate steady-state operation at a relevant plasma β.
  - Demonstrate operation of 'Island-divertor' 

Wendelstein 7-X: 'Quasi-isodynamic' Stellerator configuration
- Trapped particles drift along constant |B|
- Magnetic configuration chosen to best confine trapped orbits.

|B|

Steady-state operation
with superconducting coils

Magnetic field optimisation
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Visible/Infrared video + Real-time protection

 

VIS/IR Endoscopes:

- Prototype OP1.2:

- Insufficient optical quality!

- Redesigning optical system (in-house) to develop new endoscopes for OP2:  
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Visible/Infrared video + Real-time protection

 - Stady-state 10MW with sensitive high heat flux divertor.
    --> Require video monitoring and intelligent protection system.

- Hot spot detection 
- False positives from surface layers.
- Avoid but detect delamination of tiles

Normal Delaminated

Delamination and surface layer detection 
from time-dependant response to heat:
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???
 dsfsdf
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