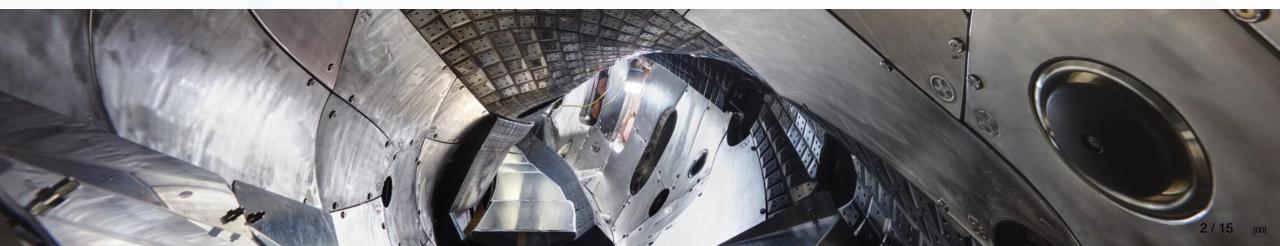
### **NBI** heat and particle transport proposals **OP2**

O. P. Ford, S. Lazerson, ... mostly everyone


Profiles topical group meeting. 14th Match 2022













Proposal list for NBI heat and particle transport/confinement.

#### Does not include:

NBI comissioning --> S. Lazerson, TG Heating/TG Fast ions NBI heating and deposition physics --> S. Lazerson, TG Fast ions Impurity transport/accumulation in (pure) NBI plasmas --> O. Ford, TG Impurities NBI Current Drive --> TG Fast ions



List merged from S. Lazerson and from TG profiles 31.01.2022:

Sorry if I've missed yours! (please tell me)

List will be updated by Sam.

- 1) Detailed transport studies
- 2) Performance optimisation
- 3) Execution of new or specific operation
- 4) New measurements (investigations with)

| Lead proponent              | Topic                                                          | Short description                                                                                                                                                                                                                                                | Objective                  | Notes                                                                                           |
|-----------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------|
| Lazerson                    | Confinement effect of ECRH on NBI (LHD Comparrison)            | Evaluate the effect on global confinment of ECRH power on ECRH+NBI discharges by varying ECRH power and deposition location.                                                                                                                                     | Investigation              | Overlap with Ford:Threshold PECRH, but different analysis focus.                                |
| Lazerson → Fuchert          | Density limits in NBI heated discharges                        | Probe density limit in NBI shots                                                                                                                                                                                                                                 | Confinement                | Do we need this separate from Lazerson: "High<br>Density with NBI". Golo take over?             |
| Ford                        | Pure NBI density peaking onset                                 | Investigation of onset time and cause of particle transport supression. Scan of initial density, single sources and gas puff during peaking.                                                                                                                     | Investigation              |                                                                                                 |
| Ford                        | Pure NBI particle and heat transport extrapolation             | Scan of number of sources 1-4 and source types. Balance fuelling and heating rates and examine extrapolation of anomalous particle and heat transport balance towards 8 beams.                                                                                   | Investigation              |                                                                                                 |
| Ford                        | Threshold of high turbulence in P_ECRH in NBI + +ECRH plasmas. | Scan P_ECRH between 0.5 and 2.5MW after density peaking in successive 2-source pure NBI discharges. Look for Q_ tot raise as $f(P_ECRH)$ repeating and filling in between existing points (#180919.055, #181009.034).                                            |                            |                                                                                                 |
| Ford                        | ECRH pump out dependence on ECRH deposition profile.           | Scan of ECRH deposition position in pure NBI after peaking built-up (~3s). Also try pure NBI with continuous ECRH outside transisition location (rho>0.5).                                                                                                       | Investigation              |                                                                                                 |
| Ford                        | Ti optimisation with NBI+ECRH.                                 | Search for highest peak and for highest continuous Ti by balance of NBI and small amount of reintroduced ECRH. Vary timing of ECRH relative to onset time and ECRH power.                                                                                        | Optimisation               | Relates to everything. Strong overlap with<br>Beidler:Reproduction of W7AS high<br>performance. |
| Ford                        | Optimised NBI+ECRH with Boron dropper                          | Add boron dropper to optimal NBI+ECRH scenario to see lowering edge gradients can rise $\operatorname{\sf Ti}$ more.                                                                                                                                             | Optimisation               | Simple extension to Ford:Ti optimisation                                                        |
| Beidler                     | Reproduction of the W7-AS high performance<br>discharges       | As on pages 72-75 of the W7-AS review paper. Using NBI+ECRH mix.                                                                                                                                                                                                 | Optimisation               | Strong overlap with Ford:Ti Optimisation                                                        |
| Stange                      | Overtake peaked NBI-plasmas with O2-heating (beyond X2-cutoff) | Max power O2 ECRH into already very peaked pure-NBI shot. Try to raise Ti and Te together like in high-performance pellets shots.                                                                                                                                | Optimisation               | Some overlap with Ford:Ti Optimisation                                                          |
| Stange                      | Overtake peaked NBI-plasmas with X3-heating at<br>1.75 T       | As Stange:Overtake With O2, but with X3 in low field.                                                                                                                                                                                                            | Optimisation               |                                                                                                 |
| Lazerson                    | Reactor Relevant Heating                                       | Use of combined NBI and ECRH to achieve similar heating profiles to that of a larger reactor (https://doi.org/10.1088/1361-6587/ac35ee)                                                                                                                          | Execution                  |                                                                                                 |
| Lazerson                    | High Power Discharge with NBI                                  | Use of combined NBI and ECRH to achieve maximum power discharges                                                                                                                                                                                                 |                            | Similar to Stange:Overtake peaked NBI                                                           |
|                             |                                                                |                                                                                                                                                                                                                                                                  | Execution                  |                                                                                                 |
| Lazerson                    | High Density with NBI                                          | Use of NBI and gas puffs to reach densities above the O2 ECRH cutoff                                                                                                                                                                                             | Execution                  |                                                                                                 |
| Lazerson                    | Low Density NBI discharges                                     | Development of discharge scenarios with density below 1e19 m^-3 using ECRH and NBI (500 ms) $$                                                                                                                                                                   | Execution                  |                                                                                                 |
| Lazerson, Romba<br>Lazerson | He NBI Injection<br>High Beta with NBI                         | He NBI in He plasma and He NBI into H plasmas.<br>5s NBI discharge at 1.25T                                                                                                                                                                                      | Execution<br>Execution     | Also something from Beurskens?<br>Not in Sam's list?                                            |
| Ford                        | Profile shaping with combined pellet and NBI fueling           | Pellet injection into NBI heated plasmas. Most likely standard, high mirror and low mirror configurations. Both discharges with pure-NBI and with ECRH+NBI.                                                                                                      | Execution                  |                                                                                                 |
| Lazerson                    | NBI takeover of ICRH                                           | Develop scenario to takeover ICRH initiaed discharge by NBI (2.5T, 1.7T, 1.25T)                                                                                                                                                                                  | Execution                  | NBI comissioning?                                                                               |
| P                           | Detector and in MDI directors                                  | Add as with the MRIA data had disharm                                                                                                                                                                                                                            | Investigation              | Overlap Beurskens:Detachment an                                                                 |
| Perseo                      | Detachment in NBI discharges                                   | Add or switch to NBI to detached discharges                                                                                                                                                                                                                      | Investigation              | Zhang:Detachment Based on Ford:Ti optimisation. Overlap with                                    |
| Beurskens                   | Detachment in optimised NBI+ECRH with seeding                  | Add seeding to NBI+ECRH optimised plasma to get detachment.  Peaked density profiles with ncore >> nX2 cut-off. But Typically NBI plasmas feature low                                                                                                            | Optimisation               | Perseo:Detachment in NBI Overlap Perseo:Detachment, Was this                                    |
| Zhang                       | Detachment in NBI discharges/Pellet plasmas                    | edge density. Is this compatible with detachment?                                                                                                                                                                                                                | Investigation              | particularly wanted or just assigned?                                                           |
| von Stechow                 | Turbulence limits of NBI density peaking                       | Peak the core density gradient as hard as possible with all sources and see (with fluctuation diagnostics) if density gradient driven IEMs or other instabilities start popping up. Dedicated experiment if no one else is asking for this, otherwise piggyback. | Investigation              | Overlap with Ford:DensityPeaking,<br>Lazerson:HighDensity                                       |
| von Stechow                 | Turbulence in matched ECRH to NBI switch                       | Match ECH power so that PCI and reflectometers see a constant fluctuation amplitude<br>during switchover.<br>Detailed analysis of ECH density pump-out with turbulence diagnostics. Based on AUG and                                                             | Investigation              | Dedicated experiment                                                                            |
| von Stechow                 | Turbulence in ECRH pump-out                                    | DIII-D observations. Probably mostly piggyback, but with best possible high time resolution kinetic profiles around ECH switch-on.                                                                                                                               | Investigation              |                                                                                                 |
|                             |                                                                |                                                                                                                                                                                                                                                                  |                            | Maybe multiple proposals. Coordinated with                                                      |
| Geiger/Swee<br>Weir         | NBI heat pulse propagation<br>NBI electron channel transport   | Measurements with CXRS. Try to measure Qi. Heat pulse propagation studies with O2-ECRH modulation                                                                                                                                                                | Measurement<br>Measurement | Weir:NBI electron transport  Coordinated with Geiger:NBI HPP                                    |
|                             |                                                                |                                                                                                                                                                                                                                                                  |                            | Partially covered by diagnostic commissioning                                                   |
| Ford                        | Maximise e-i coupling                                          | Obtained minimum possible Te-Ti to validate and determine offsets of TS, ECE, XICS, CXRS                                                                                                                                                                         | ivieasurement              | in E3-DIA                                                                                       |



- 1) Heat and main ion particle transport studies
- 2) Performance optimisation

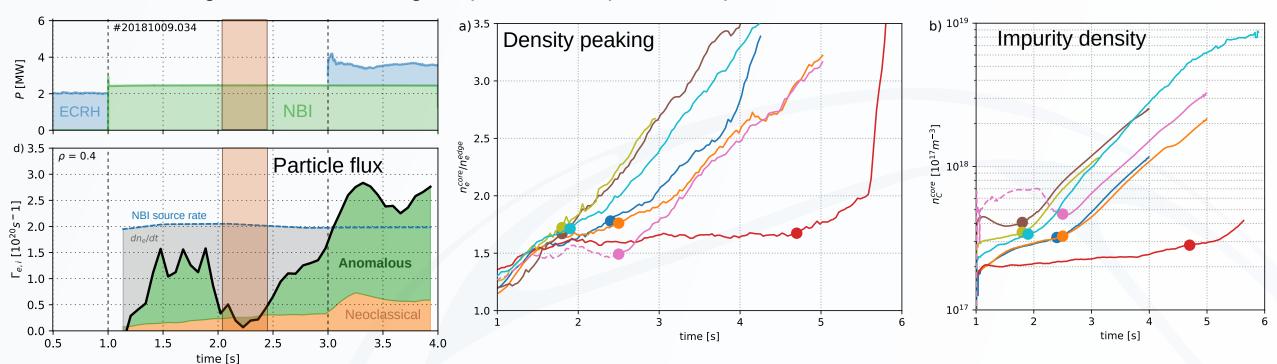
| Lead proponent     | Topic                                                          | Short description                                                                                                                                                                                                  | Objective     | Notes                                                                                     |
|--------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------|
| Lazersoni          | Confinement effect of ECRH on NBI (LHD Comparrison)            | Evaluate the effect on global confinment of ECRH power on ECRH+NBI discharges by varying ECRH power and deposition location.                                                                                       | Investigation | Overlap with Ford:Threshold PECRH, but different analysis focus.                          |
| Lazerson → Fuchert | Density limits in NBI heated discharges                        | Probe density limit in NBI shots                                                                                                                                                                                   | Confinement   | Do we need this separate from Lazerson: "High Density with NBI". Golo take over?          |
| Ford               | Pure NBI density peaking onset                                 | Investigation of onset time and cause of particle transport supression. Scan of initial density, single sources and gas puff during peaking.                                                                       | Investigation |                                                                                           |
| Ford               | Pure NBI particle and heat transport extrapolation             | Scan of number of sources 1-4 and source types. Balance fuelling and heating rates and examine extrapolation of anomalous particle and heat transport balance towards 8 beams.                                     | Investigation |                                                                                           |
| Ford               | Threshold of high turbulence in P_ECRH in NBI + +ECRH plasmas. | Scan P_ECRH between 0.5 and 2.5MW after density peaking in successive 2-source pure NBI discharges. Look for Q_tot raise as f(P_ECRH) repeating and filling in between existing points (#180919.055, #181009.034). |               |                                                                                           |
| FORG               | ECRH pump out dependence on ECRH deposition profile.           | Scan of ECRH deposition position in pure NBI after peaking built-up ( $\sim$ 3s). Also try pure NBI with continuous ECRH outside transisition location (rho>0.5).                                                  | Investigation |                                                                                           |
| Ford               | Ti optimisation with NBI+ECRH.                                 | Search for highest peak and for highest continuous Ti by balance of NBI and small amount of reintroduced ECRH. Vary timing of ECRH relative to onset time and ECRH power.                                          | Optimisation  | Relates to everything. Strong overlap with Beidler:Reproduction of W7AS high performance. |
|                    | Optimised NBI+ECRH with Boron dropper                          | Add boron dropper to optimal NBI+ECRH scenario to see lowering edge gradients can rise Ti more.                                                                                                                    | Optimisation  | Simple extension to Ford:Ti optimisation                                                  |
|                    | Reproduction of the W7-AS high performance discharges          | As on pages 72-75 of the W7-AS review paper. Using NBI+ECRH mix.                                                                                                                                                   | Optimisation  | Strong overlap with Ford:Ti Optimisation                                                  |
|                    | Overtake peaked NBI-plasmas with O2-heating (beyond X2-cutoff) | Max power O2 ECRH into already very peaked pure-NBI shot. Try to raise Ti and Te together like in high-performance pellets shots.                                                                                  | Optimisation  | Some overlap with Ford:Ti Optimisation                                                    |
|                    | Overtake peaked NBI-plasmas with X3-heating at 1.75 T          | As Stange:Overtake With O2, but with X3 in low field.                                                                                                                                                              | Optimisation  |                                                                                           |
|                    |                                                                |                                                                                                                                                                                                                    |               |                                                                                           |



- 1) Heat and main ion particle transport studies
- 2) Performance optimisation

| Lead proponent     | Topic                                                          | Short description                                                                                                                                                                                                  | Objective     | Notes                                                                                     |
|--------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------|
| Lazerson           | Confinement effect of ECRH on NBI (LHD Comparrison)            | Evaluate the effect on global confinment of ECRH power on ECRH+NBI discharges by varying ECRH power and deposition location.                                                                                       | Investigation | Overlap with Ford:Threshold PECRH, but different analysis focus.                          |
| Lazerson → Fuchert | Density limits in NBI heated discharges                        | Probe density limit in NBI shots                                                                                                                                                                                   | Confinement   | Do we need this separate from Lazerson: "High Density with NBI". Golo take over?          |
| Ford               | Pure NBI density peaking onset                                 | Investigation of onset time and cause of particle transport supression. Scan of initial density, single sources and gas puff during peaking.                                                                       | Investigation |                                                                                           |
| Ford               | Pure NBI particle and heat transport extrapolation             | Scan of number of sources 1-4 and source types. Balance fuelling and heating rates and examine extrapolation of anomalous particle and heat transport balance towards 8 beams.                                     | Investigation |                                                                                           |
| Ford               | Threshold of high turbulence in P_ECRH in NBI + +ECRH plasmas. | Scan P_ECRH between 0.5 and 2.5MW after density peaking in successive 2-source pure NBI discharges. Look for Q_tot raise as f(P_ECRH) repeating and filling in between existing points (#180919.055, #181009.034). |               |                                                                                           |
| Ford               | ECRH pump out dependence on ECRH deposition profile.           | Scan of ECRH deposition position in pure NBI after peaking built-up ( $\sim$ 3s). Also try pure NBI with continuous ECRH outside transisition location (rho>0.5).                                                  | Investigation |                                                                                           |
| Ford               | Ti optimisation with NBI+ECRH.                                 | Search for highest peak and for highest continuous Ti by balance of NBI and small amount of reintroduced ECRH. Vary timing of ECRH relative to onset time and ECRH power.                                          | Optimisation  | Relates to everything. Strong overlap with Beidler:Reproduction of W7AS high performance. |
| Ford               | Optimised NBI+ECRH with Boron dropper                          | Add boron dropper to optimal NBI+ECRH scenario to see lowering edge gradients can rise Ti more.                                                                                                                    | Optimisation  | Simple extension to Ford:Ti optimisation                                                  |
| Beidler            | Reproduction of the W7-AS high performance discharges          | As on pages 72-75 of the W7-AS review paper. Using NBI+ECRH mix.                                                                                                                                                   | Optimisation  | Strong overlap with Ford:Ti Optimisation                                                  |
| Stange             | (beyond X2-cutoff)                                             | Max power O2 ECRH into already very peaked pure-NBI shot. Try to raise Ti and Te together like in high-performance pellets shots.                                                                                  | Optimisation  | Some overlap with Ford:Ti Optimisation                                                    |
| Stange             | Overtake peaked NBI-plasmas with X3-heating at 1.75 T          | As Stange:Overtake With O2, but with X3 in low field.                                                                                                                                                              | Optimisation  |                                                                                           |
| 4                  |                                                                |                                                                                                                                                                                                                    |               |                                                                                           |




- 1) Heat and main ion particle transport studies
- 2) Performance optimisation

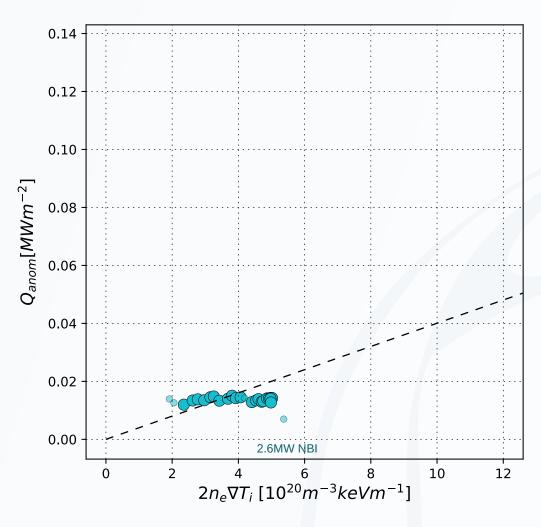
| Lead proponent     | Topic                                                          | Short description                                                                                                                                                                                                  | Objective     | Notes                                                                                     |
|--------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------|
| Lazerson           | Confinement effect of ECRH on NBI (LHD Comparrison)            | Evaluate the effect on global confinment of ECRH power on ECRH+NBI discharges by varying ECRH power and deposition location.                                                                                       | Investigation | Overlap with Ford:Threshold PECRH, but different analysis focus.                          |
| Lazerson → Fuchert | Density limits in NBI heated discharges                        | Probe density limit in NBI shots                                                                                                                                                                                   | Confinement   | Do we need this separate from Lazerson: "High Density with NBI". Golo take over?          |
| Ford               | Pure NBI density peaking onset                                 | Investigation of onset time and cause of particle transport supression. Scan of initial density, single sources and gas puff during peaking.                                                                       | Investigation |                                                                                           |
| Ford               | Pure NBI particle and heat transport extrapolation             | Scan of number of sources 1-4 and source types. Balance fuelling and heating rates and examine extrapolation of anomalous particle and heat transport balance towards 8 beams.                                     | Investigation |                                                                                           |
| Ford               | Threshold of high turbulence in P_ECRH in NBI + +ECRH plasmas. | Scan P_ECRH between 0.5 and 2.5MW after density peaking in successive 2-source pure NBI discharges. Look for Q_tot raise as f(P_ECRH) repeating and filling in between existing points (#180919.055, #181009.034). |               |                                                                                           |
| Ford               | ECRH pump out dependence on ECRH deposition profile.           | Scan of ECRH deposition position in pure NBI after peaking built-up ( $\sim$ 3s). Also try pure NBI with continuous ECRH outside transisition location (rho>0.5).                                                  | Investigation |                                                                                           |
| Ford               | Ti optimisation with NBI+ECRH.                                 | Search for highest peak and for highest continuous Ti by balance of NBI and small amount of reintroduced ECRH. Vary timing of ECRH relative to onset time and ECRH power.                                          | Optimisation  | Relates to everything. Strong overlap with Beidler:Reproduction of W7AS high performance. |
| Ford               | Optimised NBI+ECRH with Boron dropper                          | Add boron dropper to optimal NBI+ECRH scenario to see lowering edge gradients can rise Ti more.                                                                                                                    | Optimisation  | Simple extension to Ford:Ti optimisation                                                  |
| Beidler            | Reproduction of the W7-AS high performance discharges          | As on pages 72-75 of the W7-AS review paper. Using NBI+ECRH mix.                                                                                                                                                   | Optimisation  | Strong overlap with Ford:Ti Optimisation                                                  |
| Stange             | (beyond X2-cutoff)                                             | Max power O2 ECRH into already very peaked pure-NBI shot. Try to raise Ti and Te together like in high-performance pellets shots.                                                                                  | Optimisation  | Some overlap with Ford:Ti Optimisation                                                    |
| Stange             | Overtake peaked NBI-plasmas with X3-heating at 1.75 T          | As Stange:Overtake With O2, but with X3 in low field.                                                                                                                                                              | Optimisation  |                                                                                           |
|                    |                                                                |                                                                                                                                                                                                                    |               |                                                                                           |

## **Pure NBI density peaking**



Pure NBI discharges: Dramatic change of particle transport inside  $\rho$  < 0.5 at some onset time:




#### Plan:

- 1. Scan initial density with pre-fill and/or gas puff at very start. Switch to pure NBI Q7+Q8.
- 2. Where  $t_{onset} \sim 1s$ , try with each individual source Q7 and Q8. Still have  $\Gamma \sim \Gamma_{NC}$ ?
- 3. Repeat with pulse gas puff in pure NBI phase. Increases  $n_e$  at edge, or just diffuses to central region?

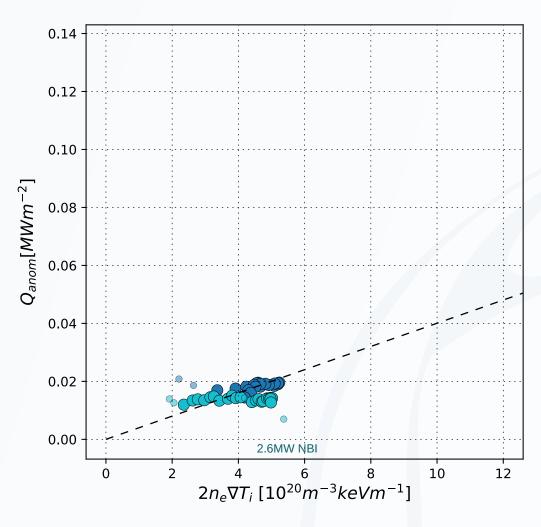
Piggy-back: Impurity transport for cabon, argon, helium during. Extra shots with injection --> TG Impurities.



#### Heat transport in NBI discharges split into 3 groups:



- A) ECRH > 3MW  $\pm$  NBI --> ITG dominated  $T_i$  clamped.
- B) NBI --> High  $a/L_{ne}$ , low  $\chi_{eff}$ , but low  $P/n_e$ .
- C) NBI + 1MW --> Low  $\chi_{eff}$ ,  $T_i > 1.6 keV$ .


#### Plan:

- 1) Pure NBI, allow density peaking build-up. Scan additional  $0.5 < P_{FCRH} < 3MW$
- 2) For one value: Start with NBI+ high ECRH and drop to target  $P_{ECRH}$  value. Is there hysteresis due to  $a/L_{ne}$  or  $T_e/T_i$ ?

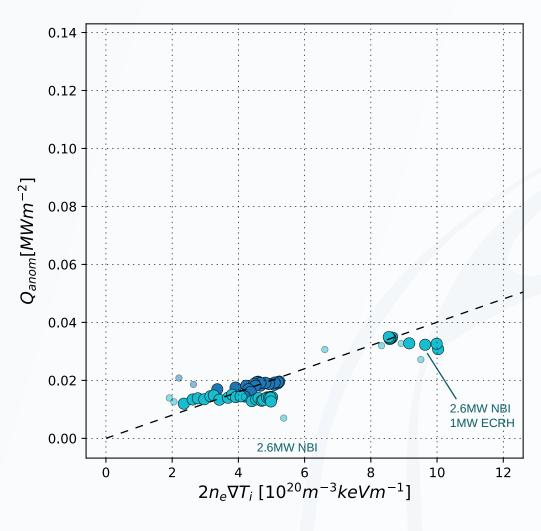
Objective is clear  $Q_{anom}$  vs  $n_e \nabla T$  scan.



#### Heat transport in NBI discharges split into 3 groups:



- A) ECRH > 3MW  $\pm$  NBI --> ITG dominated  $T_i$  clamped.
- B) NBI --> High  $a/L_{ne}$ , low  $\chi_{eff}$ , but low  $P/n_e$ .
- C) NBI + 1MW --> Low  $\chi_{eff}$ ,  $T_i$  > 1.6keV.


#### Plan:

- 1) Pure NBI, allow density peaking build-up. Scan additional  $0.5 < P_{ECRH} < 3MW$
- 2) For one value: Start with NBI+ high ECRH and drop to target  $P_{ECRH}$  value. Is there hysteresis due to  $a/L_{ne}$  or  $T_e/T_i$ ?

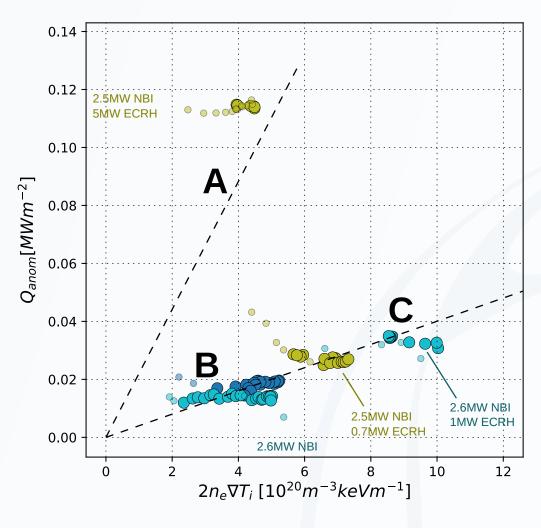
Objective is clear  $Q_{anom}$  vs  $n_e \nabla T$  scan.



#### Heat transport in NBI discharges split into 3 groups:



- A) ECRH > 3MW  $\pm$  NBI --> ITG dominated  $T_i$  clamped.
- B) NBI --> High  $a/L_{ne}$ , low  $\chi_{eff}$ , but low  $P/n_e$ .
- C) NBI + 1MW --> Low  $\chi_{eff}$ ,  $T_i > 1.6 keV$ .


#### Plan:

- 1) Pure NBI, allow density peaking build-up. Scan additional  $0.5 < P_{FCRH} < 3MW$
- 2) For one value: Start with NBI+ high ECRH and drop to target  $P_{ECRH}$  value. Is there hysteresis due to  $a/L_{ne}$  or  $T_e/T_i$ ?

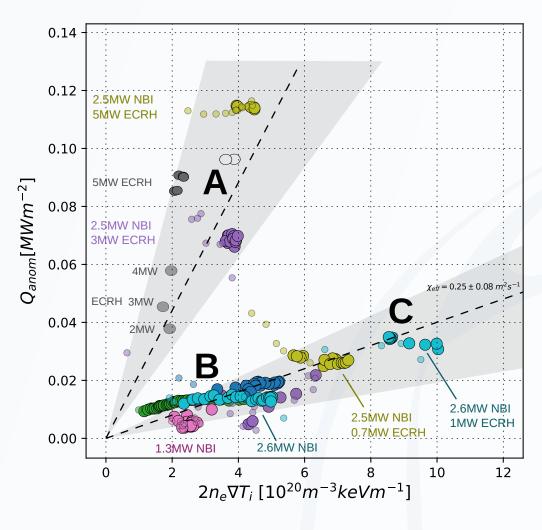
Objective is clear  $Q_{anom}$  vs  $n_e \nabla T$  scan.



#### Heat transport in NBI discharges split into 3 groups:



- A) ECRH > 3MW  $\pm$  NBI --> ITG dominated  $T_i$  clamped.
- B) NBI --> High  $a/L_{ne}$ , low  $\chi_{eff}$ , but low  $P/n_e$ .
- C) NBI + 1MW --> Low  $\chi_{eff}$ ,  $T_i$  > 1.6keV.


#### Plan:

- 1) Pure NBI, allow density peaking build-up. Scan additional  $0.5 < P_{FCRH} < 3MW$
- 2) For one value: Start with NBI+ high ECRH and drop to target  $P_{ECRH}$  value. Is there hysteresis due to  $a/L_{ne}$  or  $T_e/T_i$ ?

Objective is clear  $Q_{anom}$  vs  $n_e \nabla T$  scan.

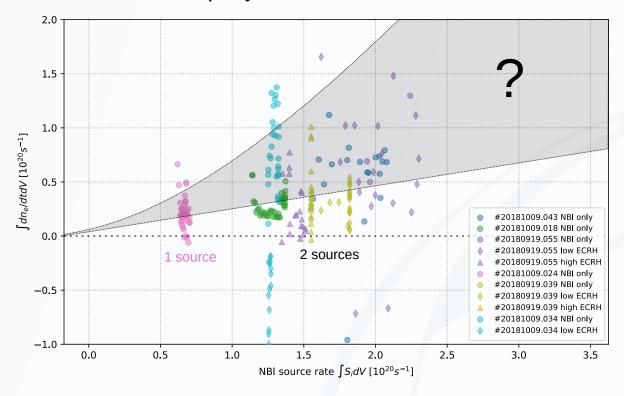


#### Heat transport in NBI discharges split into 3 groups:



- A) ECRH > 3MW  $\pm$  NBI --> ITG dominated  $T_i$  clamped.
- B) NBI --> High  $a/L_{ne}$ , low  $\chi_{eff}$ , but low  $P/n_e$ .
- C) NBI + 1MW --> Low  $\chi_{eff}$ ,  $T_i$  > 1.6keV.

#### Plan:


- 1) Pure NBI, allow density peaking build-up. Scan additional  $0.5 < P_{FCRH} < 3MW$
- 2) For one value: Start with NBI+ high ECRH and drop to target  $P_{ECRH}$  value. Is there hysteresis due to  $a/L_{ne}$  or  $T_e/T_i$ ?

Objective is clear  $Q_{anom}$  vs  $n_e \nabla T$  scan.

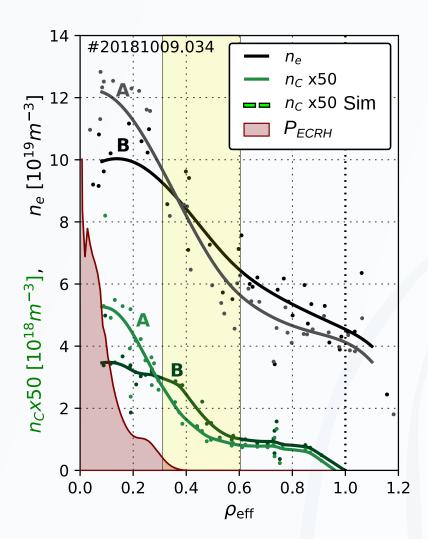
### NBI particle vs heat transport scaling to 8 sources.



Pure NBI discharges showed low  $\chi_{eff}$ , but low  $P/n_e$ . Scaling of ne with sources is not at all clear and needed for projections to 8 sources.



#### Plan:


- 1) Scan of 1, 2, 3 and 4 NBI sources, min 3s. Collect density rise rate as function of  $N_{source}$  before and after particle peaking onset.
- 2) Switch source sets of 1 and 2 sources: Q7, Q8, (Q3+Q7), (Q4+Q8) to look for changes of deposition profiles on  $T_i$  and  $n_e$ .

If  $n_e$  rise scales, add low ECRH as neccessary to control impurities and maintain sufficient  $P/n_e$ .

Passive impurity monitoring (C, O, trace Ar), but no injections.

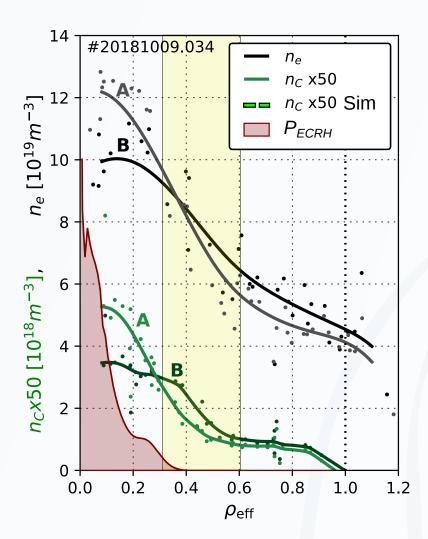


Peaked NBI impurity density profiles flattened with O2 ECRH. Possibly also true for main density.



#### Plan:

- 1) If better  $n_e$  profiles available, repeat to see if  $n_e$  also flat in deposition region.
- 2) Try with X2 ECRH before density is too high.
- 3) Scan X2 deposition position to see effect on  $n_7$  and  $n_e$ .
- 4) (if possible). Try with deposition only outside  $\rho > 0.5$ .
- 5) Spread ECRH for low power density to maximise ne gradient for same  $P_{FCRH}$


Impurity monitoring C, Ar, He.

Finally impurity injection into the flattened core --> TG Impurities proposal.

- 1) Anomalous particle and impurity transport dependance on  $P_{ECRH}$  density.
- 2) Optimum ECRH power deposition for not reducing  $n_e$  gradient.

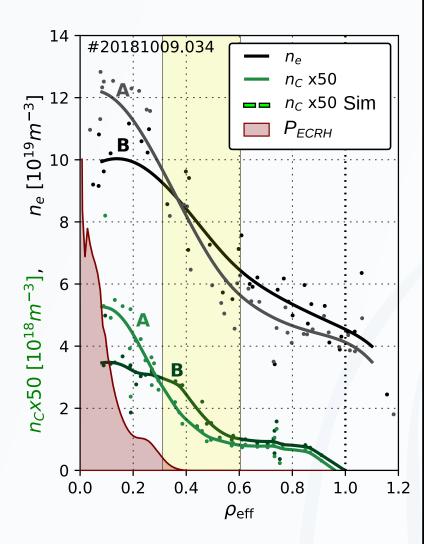


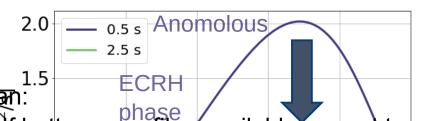
Peaked NBI impurity density profiles flattened with O2 ECRH. Possibly also true for main density.



#### Plan:

- 1) If better  $n_e$  profiles available, repeat to see if  $n_e$  also flat in deposition region.
- 2) Try with X2 ECRH before density is too high.
- 3) Scan X2 deposition position to see effect on  $n_7$  and  $n_e$ .
- 4) (if possible). Try with deposition only outside  $\rho > 0.5$ .
- 5) Spread ECRH for low power density to maximise ne gradient for same  $P_{FCRH}$


Impurity monitoring C, Ar, He.


Finally impurity injection into the flattened core --> TG Impurities proposal.

- 1) Anomalous particle and impurity transport dependance on  $P_{ECRH}$  density.
- 2) Optimum ECRH power deposition for not reducing  $n_e$  gradient.

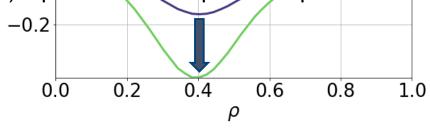


Peaked NBI impurity density profiles f



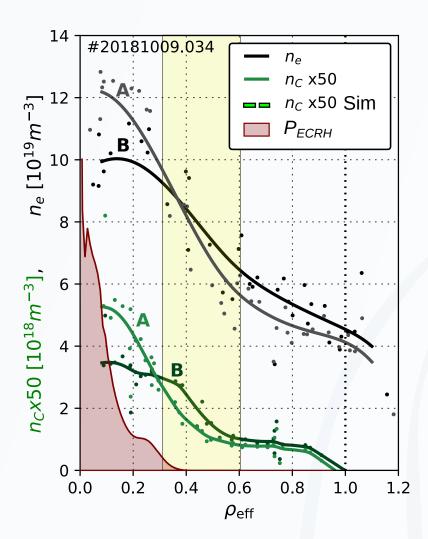


1) If patter  $n_e$  profiles available, repeat to see if  $n_e$  also flat in deposition region.


main density.

- 2) Try with X2 ECRH before density is too high.
- 3) Scan X2 deposition position to see effect on  $n_z$  and  $n_e$ .
- 4) (if possible). Try with deposition only outside  $\rho > 0.5$ .
- 5) Spread ECP3H for low power density to makimise ne gradient for same P<sub>ECRH</sub>.

Impurity monitoring C, Ar, He.


Finally impurity injection into the flattened core --> TG Impurities proposal.

- El) Aflemalous particle and impurity transport dependance on P<sub>ECRH</sub> density.
- >2) Optimum ECRH power deposition for not reducing  $n_e$  gradient.



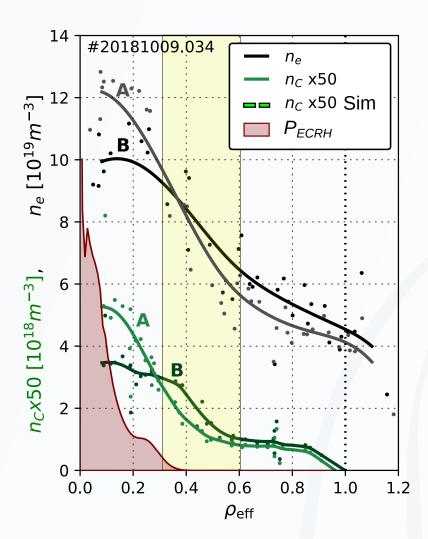


Peaked NBI impurity density profiles flattened with O2 ECRH. Possibly also true for main density.



#### Plan:

- 1) If better  $n_e$  profiles available, repeat to see if  $n_e$  also flat in deposition region.
- 2) Try with X2 ECRH before density is too high.
- 3) Scan X2 deposition position to see effect on  $n_7$  and  $n_e$ .
- 4) (if possible). Try with deposition only outside  $\rho > 0.5$ .
- 5) Spread ECRH for low power density to maximise ne gradient for same  $P_{FCRH}$


Impurity monitoring C, Ar, He.

Finally impurity injection into the flattened core --> TG Impurities proposal.

- 1) Anomalous particle and impurity transport dependance on  $P_{ECRH}$  density.
- 2) Optimum ECRH power deposition for not reducing  $n_e$  gradient.



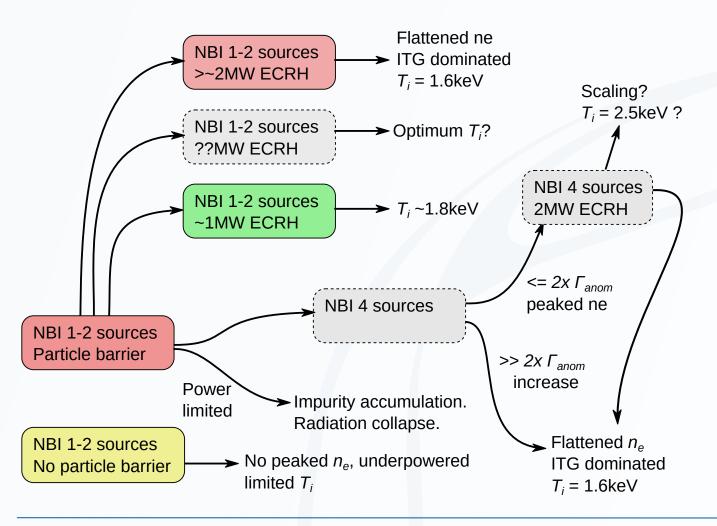
Peaked NBI impurity density profiles flattened with O2 ECRH. Possibly also true for main density.

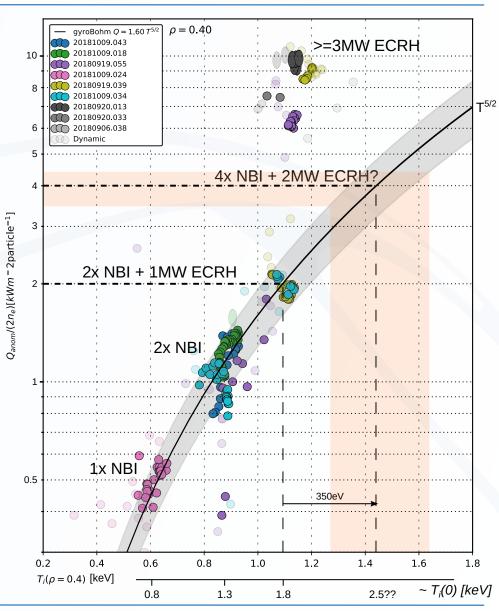


#### Plan:

- 1) If better  $n_e$  profiles available, repeat to see if  $n_e$  also flat in deposition region.
- 2) Try with X2 ECRH before density is too high.
- 3) Scan X2 deposition position to see effect on  $n_7$  and  $n_e$ .
- 4) (if possible). Try with deposition only outside  $\rho > 0.5$ .
- 5) Spread ECRH for low power density to maximise ne gradient for same  $P_{FCRH}$

Impurity monitoring C, Ar, He.


Finally impurity injection into the flattened core --> TG Impurities proposal.

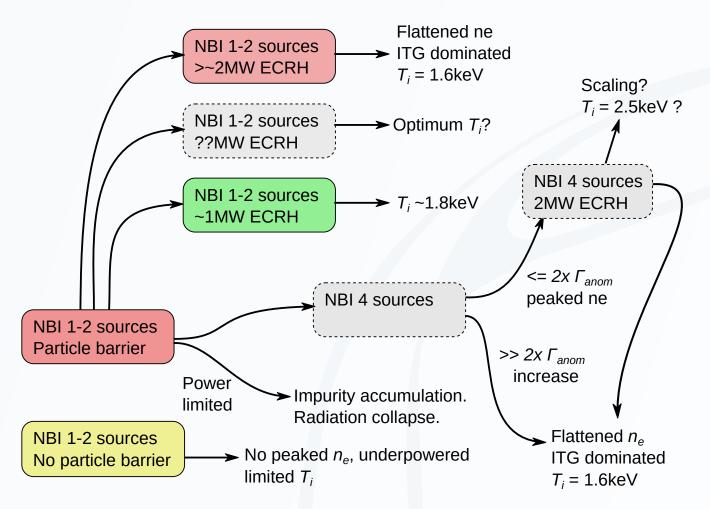

- 1) Anomalous particle and impurity transport dependance on  $P_{ECRH}$  density.
- 2) Optimum ECRH power deposition for not reducing  $n_e$  gradient.

## $T_i$ optimisation in NBI +ECRH plasmas.



Direct scenario development to maximise Ti with NBI+ECRH combinations using informaion gathered from other proposals.






## $T_i$ optimisation in NBI +ECRH plasmas.



Direct scenario development to maximise Ti with NBI+ECRH combinations using information gathered

from previous proposals.



- 1) Search timing of ~1MW ECRH reintroduction into pure NBI (Q7+Q8) discharge (inform from proposal "NBI density peaking", X2 vs O2 depends on timing.)
- 2) At best timing, find best ECRH power in range  $\sim 0.5 2.5$ MW ( $P_{ECRH}$  from "NBI+ECRH ITG threshold" Deposition profile (if X2) from "ECRH pump out")
- 3) Increase to 4 NBI sources, same optimal  $P_{ECRH}$ .
- 4) Increase  $P_{ECRH}$ . Is turbulence threshold now at higher or lower Q?

Hold for max available time, no disturbances. Optimise for max stable  $T_i$  and for max peak  $T_i$ .

5) Repeat optimum in NC sub-optimal configuration.



- 1) Heat and main ion particle transport studies
- 2) Performance optimisation

| Lead proponent     | Topic                                                          | Short description                                                                                                                                                                                                  | Objective     | Notes                                                                                     |
|--------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------|
| Lazersoni          | Confinement effect of ECRH on NBI (LHD Comparrison)            | Evaluate the effect on global confinment of ECRH power on ECRH+NBI discharges by varying ECRH power and deposition location.                                                                                       | Investigation | Overlap with Ford:Threshold PECRH, but different analysis focus.                          |
| Lazerson → Fuchert | Density limits in NBI heated discharges                        | Probe density limit in NBI shots                                                                                                                                                                                   | Confinement   | Do we need this separate from Lazerson: "High Density with NBI". Golo take over?          |
| Ford               | Pure NBI density peaking onset                                 | Investigation of onset time and cause of particle transport supression. Scan of initial density, single sources and gas puff during peaking.                                                                       | Investigation |                                                                                           |
| Ford               | Pure NBI particle and heat transport extrapolation             | Scan of number of sources 1-4 and source types. Balance fuelling and heating rates and examine extrapolation of anomalous particle and heat transport balance towards 8 beams.                                     | Investigation |                                                                                           |
| Ford               | Threshold of high turbulence in P_ECRH in NBI + +ECRH plasmas. | Scan P_ECRH between 0.5 and 2.5MW after density peaking in successive 2-source pure NBI discharges. Look for Q_tot raise as f(P_ECRH) repeating and filling in between existing points (#180919.055, #181009.034). |               |                                                                                           |
| FORG               | ECRH pump out dependence on ECRH deposition profile.           | Scan of ECRH deposition position in pure NBI after peaking built-up ( $\sim$ 3s). Also try pure NBI with continuous ECRH outside transisition location (rho>0.5).                                                  | Investigation |                                                                                           |
| Ford               | Ti optimisation with NBI+ECRH.                                 | Search for highest peak and for highest continuous Ti by balance of NBI and small amount of reintroduced ECRH. Vary timing of ECRH relative to onset time and ECRH power.                                          | Optimisation  | Relates to everything. Strong overlap with Beidler:Reproduction of W7AS high performance. |
|                    | Optimised NBI+ECRH with Boron dropper                          | Add boron dropper to optimal NBI+ECRH scenario to see lowering edge gradients can rise Ti more.                                                                                                                    | Optimisation  | Simple extension to Ford:Ti optimisation                                                  |
|                    | Reproduction of the W7-AS high performance discharges          | As on pages 72-75 of the W7-AS review paper. Using NBI+ECRH mix.                                                                                                                                                   | Optimisation  | Strong overlap with Ford:Ti Optimisation                                                  |
|                    | Overtake peaked NBI-plasmas with O2-heating (beyond X2-cutoff) | Max power O2 ECRH into already very peaked pure-NBI shot. Try to raise Ti and Te together like in high-performance pellets shots.                                                                                  | Optimisation  | Some overlap with Ford:Ti Optimisation                                                    |
|                    | Overtake peaked NBI-plasmas with X3-heating at 1.75 T          | As Stange:Overtake With O2, but with X3 in low field.                                                                                                                                                              | Optimisation  |                                                                                           |
|                    |                                                                |                                                                                                                                                                                                                    |               |                                                                                           |



- 1) Heat and main ion particle transport studies
- 2) Performance optimisation

| Lead proponent     | Topic                                                          | Short description                                                                                                                                                                                                  | Objective     | Notes                                                                                     |
|--------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------|
| Lazerson           | Confinement effect of ECRH on NBI (LHD Comparrison)            | Evaluate the effect on global confinment of ECRH power on ECRH+NBI discharges by varying ECRH power and deposition location.                                                                                       | Investigation | Overlap with Ford:Threshold PECRH, but different analysis focus.                          |
| Lazerson → Fuchert | Density limits in NBI heated discharges                        | Probe density limit in NBI shots                                                                                                                                                                                   | Confinement   | Do we need this separate from Lazerson: "High Density with NBI". Golo take over?          |
| Ford               | Pure NBI density peaking onset                                 | Investigation of onset time and cause of particle transport supression. Scan of initial density, single sources and gas puff during peaking.                                                                       | Investigation |                                                                                           |
| Ford               | Pure NBI particle and heat transport extrapolation             | Scan of number of sources 1-4 and source types. Balance fuelling and heating rates and examine extrapolation of anomalous particle and heat transport balance towards 8 beams.                                     | Investigation |                                                                                           |
| Ford               | Threshold of high turbulence in P_ECRH in NBI + +ECRH plasmas. | Scan P_ECRH between 0.5 and 2.5MW after density peaking in successive 2-source pure NBI discharges. Look for Q_tot raise as f(P_ECRH) repeating and filling in between existing points (#180919.055, #181009.034). |               |                                                                                           |
| Ford               | ECRH pump out dependence on ECRH deposition profile.           | Scan of ECRH deposition position in pure NBI after peaking built-up (~3s). Also try pure NBI with continuous ECRH outside transisition location (rho>0.5).                                                         | Investigation |                                                                                           |
| Ford               | Ti optimisation with NBI+ECRH.                                 | Search for highest peak and for highest continuous Ti by balance of NBI and small amount of reintroduced ECRH. Vary timing of ECRH relative to onset time and ECRH power.                                          | Optimisation  | Relates to everything. Strong overlap with Beidler:Reproduction of W7AS high performance. |
| Ford               | Optimised NBI+ECRH with Boron dropper                          | Add boron dropper to optimal NBI+ECRH scenario to see lowering edge gradients can rise Ti more.                                                                                                                    | Optimisation  | Simple extension to Ford:Ti optimisation                                                  |
| Beidler            | Reproduction of the W7-AS high performance discharges          | As on pages 72-75 of the W7-AS review paper. Using NBI+ECRH mix.                                                                                                                                                   | Optimisation  | Strong overlap with Ford:Ti Optimisation                                                  |
| Stange             | Overtake peaked NBI-plasmas with O2-heating (beyond X2-cutoff) | Max power O2 ECRH into already very peaked pure-NBI shot. Try to raise Ti and Te together like in high-performance pellets shots.                                                                                  | Optimisation  | Some overlap with Ford:Ti Optimisation                                                    |
| Stange             | Overtake peaked NBI-plasmas with X3-heating at 1.75 T          | As Stange:Overtake With O2, but with X3 in low field.                                                                                                                                                              | Optimisation  |                                                                                           |
|                    |                                                                |                                                                                                                                                                                                                    |               |                                                                                           |



- 1) Heat and main ion particle transport studies
- 2) Performance optimisation

| Lead proponent     | Topic                                                          | Short description                                                                                                                                                                                                  | Objective     | Notes                                                                                           |
|--------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------|
| Lazerson           | Confinement effect of ECRH on NBI (LHD Comparrison)            | Evaluate the effect on global confinment of ECRH power on ECRH+NBI discharges by varying ECRH power and deposition location.                                                                                       | Investigation | Overlap with Ford:Threshold PECRH, but different analysis focus.                                |
| Lazerson → Fuchert | Density limits in NBI heated discharges                        | Probe density limit in NBI shots                                                                                                                                                                                   | Confinement   | Do we need this separate from Lazerson: "High Density with NBI". Golo take over?                |
| Ford               | Pure NBI density peaking onset                                 | Investigation of onset time and cause of particle transport supression. Scan of initial density, single sources and gas puff during peaking.                                                                       | Investigation |                                                                                                 |
| Ford               | Pure NBI particle and heat transport extrapolation             | Scan of number of sources 1-4 and source types. Balance fuelling and heating rates and examine extrapolation of anomalous particle and heat transport balance towards 8 beams.                                     | Investigation |                                                                                                 |
| Ford               | Threshold of high turbulence in P_ECRH in NBI + +ECRH plasmas. | Scan P_ECRH between 0.5 and 2.5MW after density peaking in successive 2-source pure NBI discharges. Look for Q_tot raise as f(P_ECRH) repeating and filling in between existing points (#180919.055, #181009.034). | Investigation |                                                                                                 |
| Ford               | ECRH pump out dependence on ECRH deposition profile.           | Scan of ECRH deposition position in pure NBI after peaking built-up (~3s). Also try pure NBI with continuous ECRH outside transisition location (rho>0.5).                                                         | Investigation |                                                                                                 |
| Ford               | Ti optimisation with NBI+ECRH.                                 | Search for highest peak and for highest continuous Ti by balance of NBI and small amount of reintroduced ECRH. Vary timing of ECRH relative to onset time and ECRH power.                                          | Optimisation  | Relates to everything. Strong overlap with<br>Beidler:Reproduction of W7AS high<br>performance. |
| Ford               | Optimised NBI+ECRH with Boron dropper                          | Add boron dropper to optimal NBI+ECRH scenario to see lowering edge gradients can rise Ti more.                                                                                                                    | Optimisation  | Simple extension to Ford:Ti optimisation                                                        |
| Beidler            | Reproduction of the W7-AS high performance discharges          | te As on pages 72-75 of the W7-AS review paper. Using NBI+ECRH mix.                                                                                                                                                | Optimisation  | Strong overlap with Ford:Ti Optimisation                                                        |
| Stange             | Overtake peaked NBI-plasmas with O2-heating (beyond X2-cutoff) | Max power O2 ECRH into already very peaked pure-NBI shot. Try to raise Ti and Te together like in high-performance pellets shots.                                                                                  | Optimisation  | Some overlap with Ford:Ti Optimisation                                                          |
| Stange             | Overtake peaked NBI-plasmas with X3-heating at 1.75 T          | As Stange:Overtake With O2, but with X3 in low field.                                                                                                                                                              | Optimisation  |                                                                                                 |
|                    |                                                                |                                                                                                                                                                                                                    |               |                                                                                                 |



- 1) Heat and main ion particle transport studies
- 2) Performance optimisation

| Lead proponent     | Topic                                                          | Short description                                                                                                                                                                                                  | Objective     | Notes                                                                                           |
|--------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------|
| Lazerson           | Confinement effect of ECRH on NBI (LHD Comparrison)            | Evaluate the effect on global confinment of ECRH power on ECRH+NBI discharges by varying ECRH power and deposition location.                                                                                       | Investigation | Overlap with Ford:Threshold PECRH, but different analysis focus.                                |
| Lazerson → Fuchert | Density limits in NBI heated discharges                        | Probe density limit in NBI shots                                                                                                                                                                                   | Confinement   | Do we need this separate from Lazerson: "High Density with NBI". Golo take over?                |
| Ford               | Pure NBI density peaking onset                                 | Investigation of onset time and cause of particle transport supression. Scan of initial density, single sources and gas puff during peaking.                                                                       | Investigation |                                                                                                 |
| Ford               | Pure NBI particle and heat transport extrapolation             | Scan of number of sources 1-4 and source types. Balance fuelling and heating rates and examine extrapolation of anomalous particle and heat transport balance towards 8 beams.                                     | Investigation |                                                                                                 |
| Ford               | Threshold of high turbulence in P_ECRH in NBI + +ECRH plasmas. | Scan P_ECRH between 0.5 and 2.5MW after density peaking in successive 2-source pure NBI discharges. Look for Q_tot raise as f(P_ECRH) repeating and filling in between existing points (#180919.055, #181009.034). |               |                                                                                                 |
| Ford               | ECRH pump out dependence on ECRH deposition profile.           | Scan of ECRH deposition position in pure NBI after peaking built-up ( $\sim$ 3s). Also try pure NBI with continuous ECRH outside transisition location (rho>0.5).                                                  | Investigation |                                                                                                 |
| Ford               | Ti optimisation with NBI+ECRH.                                 | Search for highest peak and for highest continuous Ti by balance of NBI and small amount of reintroduced ECRH. Vary timing of ECRH relative to onset time and ECRH power.                                          | Optimisation  | Relates to everything. Strong overlap with<br>Beidler:Reproduction of W7AS high<br>performance. |
| Ford               | Optimised NBI+ECRH with Boron dropper                          | Add boron dropper to optimal NBI+ECRH scenario to see lowering edge gradients can rise Ti more.                                                                                                                    | Optimisation  | Simple extension to Ford:Ti optimisation                                                        |
| Beidler            | Reproduction of the W7-AS high performance discharges          | As on pages 72-75 of the W7-AS review paper. Using NBI+ECRH mix.                                                                                                                                                   | Optimisation  | Strong overlap with Ford:Ti Optimisation                                                        |
| Stange             | Overtake peaked NBI-plasmas with O2-heating (beyond X2-cutoff) | Max power O2 ECRH into already very peaked pure-NBI shot. Try to raise Ti and Te together like in high-performance pellets shots.                                                                                  | Optimisation  | Some overlap with Ford:Ti Optimisation                                                          |
| Stange             | Overtake peaked NBI-plasmas with X3-heating at 1.75 T          | As Stange:Overtake With O2, but with X3 in low field.                                                                                                                                                              | Optimisation  |                                                                                                 |
|                    |                                                                |                                                                                                                                                                                                                    |               |                                                                                                 |

Use of combined NBI and ECRH to achieve similar heating profiles to that of a larger reactor



### Proposals related to:

### 3) Execution of new or specific operation

| Lazerson        | Reactor Relevant Heating                             | (https://doi.org/10.1088/1361-6587/ac35ee)                                                                                                                                          | Execution      |                                                                                              |
|-----------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------|
| Lazerson        | High Power Discharge with NBI                        | Use of combined NBI and ECRH to achieve maximum power discharges                                                                                                                    |                | Similar to Stange:Overtake peaked NBI                                                        |
|                 |                                                      |                                                                                                                                                                                     | Execution      |                                                                                              |
| Lazerson        | High Density with NBI                                | Use of NBI and gas puffs to reach densities above the O2 ECRH cutoff                                                                                                                | Execution      |                                                                                              |
| Lazerson        | Low Density NBI discharges                           | Development of discharge scenarios with density below 1e19 m^-3 using ECRH and NBI (500 ms)                                                                                         | Execution      |                                                                                              |
| Lazerson, Romba | He NBI Injection                                     | He NBI in He plasma and He NBI into H plasmas.                                                                                                                                      | Execution      | Also something from Beurskens?                                                               |
| Lazerson        | High Beta with NBI                                   | 5s NBI discharge at 1.25T                                                                                                                                                           | Execution      | Not in Sam's list?                                                                           |
| Ford            | Profile shaping with combined pellet and NBI fueling | Pellet injection into NBI heated plasmas. Most likely standard, high mirror and low mirror configurations. Both discharges with pure-NBI and with ECRH+NBI.                         | Execution      |                                                                                              |
| Lazerson        | NBI takeover of ICRH                                 | Develop scenario to takeover ICRH initiaed discharge by NBI (2.5T, 1.7T, 1.25T)                                                                                                     | Execution      | NBI comissioning?                                                                            |
|                 |                                                      | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                             |                |                                                                                              |
| Perseo          | Detachment in NBI discharges                         | Add or switch to NBI in detached discharges. 2) Try detachment in NBI discharges. No seeding.                                                                                       | )<br>Execution | Overlap Beurskens:Detachment and Zhang:Detachment. Overlap Lazerson:High density NBI for #2. |
| Beurskens       | Detachment in optimised NBI+ECRH with seeding        | Add seeding to NBI+ECRH optimised plasma to get detachment.                                                                                                                         | Optimisation   | Based on Ford:Ti optimisation. Overlap with<br>Perseo:Detachment in NBI                      |
| Zhang           | Detachment in NBI discharges/Pellet plasmas          | Peaked density profiles with ncore >> nX2 cut-off. But Typically NBI plasmas feature low edge density. Is this compatible with detachment?                                          | Investigation  | Overlap Perseo:Detachment. Was this particularly wanted or just assigned?                    |
|                 |                                                      |                                                                                                                                                                                     |                |                                                                                              |
|                 |                                                      | Peak the core density gradient as hard as possible with all sources and see (with fluctuation diagnostics) if density gradient driven TEMs or other instabilities start popping up. | 1              | Overlap with Ford:DensityPeaking,                                                            |
| von Stechow     | Turbulence limits of NBI density peaking             | Dedicated experiment if no one else is asking for this, otherwise piggyback.  Match ECH power so that PCI and reflectometers see a constant fluctuation amplitude                   | Investigation  | Lazerson:HighDensity                                                                         |
| von Stechow     | Turbulence in matched ECRH to NBI switch             | during switchover.  Detailed analysis of ECH density pump-out with turbulence diagnostics. Based on AUG and                                                                         | Investigation  | Dedicated experiment                                                                         |
|                 |                                                      | DIII-D observations. Probably mostly piggyback, but with best possible high time                                                                                                    |                |                                                                                              |
| von Stechow     | Turbulence in ECRH pump-out                          | resolution kinetic profiles around ECH switch-on.                                                                                                                                   | Investigation  |                                                                                              |



### Proposals related to:

### 3) Execution of new or specific operation

| Lazerson        | Reactor Relevant Heating      | Use of combined NBI and ECRH to achieve similar heating profiles to that of a larger reactor (https://doi.org/10.1088/1361-6587/ac35ee)                     | Execution |                                       |
|-----------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|
| Lazerson        | High Power Discharge with NBI | Use of combined NBI and ECRH to achieve maximum power discharges                                                                                            | Execution | Similar to Stange:Overtake peaked NBI |
| Lazerson        | High Density with NBI         | Use of NBI and gas puffs to reach densities above the O2 ECRH cutoff                                                                                        | Execution |                                       |
| Lazerson        | Low Density NBI discharges    | Development of discharge scenarios with density below 1e19 m^-3 using ECRH and NBI (500 ms)                                                                 | Execution |                                       |
| Lazerson, Romba | He NBI Injection              | He NBI in He plasma and He NBI into H plasmas.                                                                                                              | Execution | Also something from Beurskens?        |
| Lazerson        | High Beta with NBI            | 5s NBI discharge at 1.25T                                                                                                                                   | Execution | Not in Sam's list?                    |
| Ford            |                               | Pellet injection into NBI heated plasmas. Most likely standard, high mirror and low mirror configurations. Both discharges with pure-NBI and with ECRH+NBI. | Execution |                                       |
| Lazerson        | NBI takeover of ICRH          | Develop scenario to takeover ICRH initiaed discharge by NBI (2.5T, 1.7T, 1.25T)                                                                             | Execution | NBI comissioning?                     |
| <u> </u>        | •                             |                                                                                                                                                             |           |                                       |

#### Detachment

| Perseo      | Detachment in NBI discharges                  | Add or switch to NBI in detached discharges. 2) Try detachmemt in NBI discharges. No seeding.                                                                                                | )<br>Execution | Overlap Beurskens:Detachment and<br>Zhang:Detachment. Overlap Lazerson:High density<br>NBI for #2. |
|-------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------|
| Beurskens   | Detachment in optimised NBI+ECRH with seeding | Add seeding to NBI+ECRH optimised plasma to get detachment.                                                                                                                                  | Optimisation   | Based on Ford:Ti optimisation. Overlap with<br>Perseo:Detachment in NBI                            |
| Zhang       | Detachment in NBI discharges/Pellet plasmas   | Peaked density profiles with ncore >> nX2 cut-off. But Typically NBI plasmas feature low edge density. Is this compatible with detachment?                                                   | Investigation  | Overlap Perseo:Detachment. Was this particularly wanted or just assigned?                          |
|             |                                               | Peak the core density gradient as hard as possible with all sources and see (with fluctuation diagnostics) if density gradient driven TEMs or other instabilities start popping up.          | 1              | Overlap with Ford:DensityPeaking,                                                                  |
| von Stechow | Turbulence limits of NBI density peaking      | Dedicated experiment if no one else is asking for this, otherwise piggyback.  Match ECH power so that PCI and reflectometers see a constant fluctuation amplitude                            | Investigation  | Lazerson:HighDensity                                                                               |
| von Stechow | Turbulence in matched ECRH to NBI switch      | during switchover.  Detailed analysis of ECH density pump-out with turbulence diagnostics. Based on AUG and DIII-D observations. Probably mostly piggyback, but with best possible high time | Investigation  | Dedicated experiment                                                                               |
| von Stechow | Turbulence in ECRH pump-out                   | resolution kinetic profiles around ECH switch-on.                                                                                                                                            | Investigation  |                                                                                                    |



### Proposals related to:

### 3) Execution of new or specific operation

| Lazerson        | Reactor Relevant Heating                             | Use of combined NBI and ECRH to achieve similar heating profiles to that of a larger reactor (https://doi.org/10.1088/1361-6587/ac35ee)                                  | Execution     |                                                                           |
|-----------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------|
| Lazerson        | High Power Discharge with NBI                        | Use of combined NBI and ECRH to achieve maximum power discharges                                                                                                         |               | Similar to Stange:Overtake peaked NBI                                     |
|                 |                                                      |                                                                                                                                                                          | Execution     |                                                                           |
| Lazerson        | High Density with NBI                                | Use of NBI and gas puffs to reach densities above the O2 ECRH cutoff                                                                                                     | Execution     |                                                                           |
| Lazerson        | Low Density NBI discharges                           | Development of discharge scenarios with density below 1e19 m^-3 using ECRH and NBI (500 ms)                                                                              | Execution     |                                                                           |
| Lazerson, Romba | He NBI Injection                                     | He NBI in He plasma and He NBI into H plasmas.                                                                                                                           | Execution     | Also something from Beurskens?                                            |
| Lazerson        | High Beta with NBI                                   | 5s NBI discharge at 1.25T                                                                                                                                                | Execution     | Not in Sam's list?                                                        |
| Ford            | Profile shaping with combined pellet and NBI fueling | Pellet injection into NBI heated plasmas. Most likely standard, high mirror and low mirror configurations. Both discharges with pure-NBI and with ECRH+NBI.              | Execution     |                                                                           |
| Lazerson        | NBI takeover of ICRH                                 | Develop scenario to takeover ICRH initiaed discharge by NBI (2.5T, 1.7T, 1.25T)                                                                                          | Execution     | NBI comissioning?                                                         |
|                 |                                                      |                                                                                                                                                                          |               |                                                                           |
|                 |                                                      |                                                                                                                                                                          |               | Overlap Beurskens:Detachment and                                          |
| Perseo          | Detachment in NBI discharges                         | <ol> <li>Add or switch to NBI in detached discharges. 2) Try detachment in NBI discharges. No<br/>seeding.</li> </ol>                                                    | Execution     | Zhang:Detachment. Overlap Lazerson:High density NBI for #2.               |
| Beurskens       | Detachment in optimised NBI+ECRH with seeding        | Add seeding to NBI+ECRH optimised plasma to get detachment.                                                                                                              | Optimisation  | Based on Ford:Ti optimisation. Overlap with<br>Perseo:Detachment in NBI   |
| Zhang           | Detachment in NBI discharges/Pellet plasmas          | Peaked density profiles with ncore >> nX2 cut-off. But Typically NBI plasmas feature low edge density. Is this compatible with detachment?                               | Investigation | Overlap Perseo:Detachment. Was this particularly wanted or just assigned? |
| Turbulenc       | e                                                    | Peak the core density gradient as hard as possible with all sources and see (with fluctuation                                                                            |               |                                                                           |
|                 |                                                      | diagnostics) if density gradient driven TEMs or other instabilities start popping up.                                                                                    |               | Overlap with Ford:DensityPeaking,                                         |
| von Stechow     | Turbulence limits of NBI density peaking             | Dedicated experiment if no one else is asking for this, otherwise piggyback.                                                                                             | Investigation | Lazerson:HighDensity                                                      |
| von Stechow     | Turbulence in matched ECRH to NBI switch             | Match ECH power so that PCI and reflectometers see a constant fluctuation amplitude during switchover.                                                                   | Investigation | Dedicated experiment                                                      |
|                 |                                                      | Detailed analysis of ECH density pump-out with turbulence diagnostics. Based on AUG and DIII-D observations. Probably mostly piggyback, but with best possible high time |               | - <del></del>                                                             |
| von Stechow     | Turbulence in ECRH pump-out                          | resolution kinetic profiles around ECH switch-on.                                                                                                                        | Investigation |                                                                           |



#### Proposals related to:

4) New measurements / use of

Geiger/Swee

Ford

NBI heat pulse propagation NBI electron channel transport

Maximise e-i coupling

Measurements with CXRS. Try to measure Qi.

Heat pulse propagation studies with O2-ECRH modulation

Obtained minimum possible Te-Ti to validate and determine offsets of TS, ECE, XICS, CXRS Measurement

Maybe multiple proposals. Coordinated with Weir:NBI electron transport Measurement

Coordinated with Geiger: NBI HPP

Partially covered by diagnostic commissioning in

Measurement



### Proposals related to:

4) New measurements / use of

|      |                       | Measurements with CXRS. Try to measure Qi. Heat pulse propagation studies with O2-ECRH modulation | Maybe multiple proposals. Coordinated with<br>Weir:NBI electron transport<br>Coordinated with Geiger:NBI HPP |
|------|-----------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Ford | Maximise e-i coupling | Obtained minimum possible Te-Ti to validate and determine offsets of TS, ECE, XICS, CXRS          | Partially covered by diagnostic commissioning in E3-DIA                                                      |



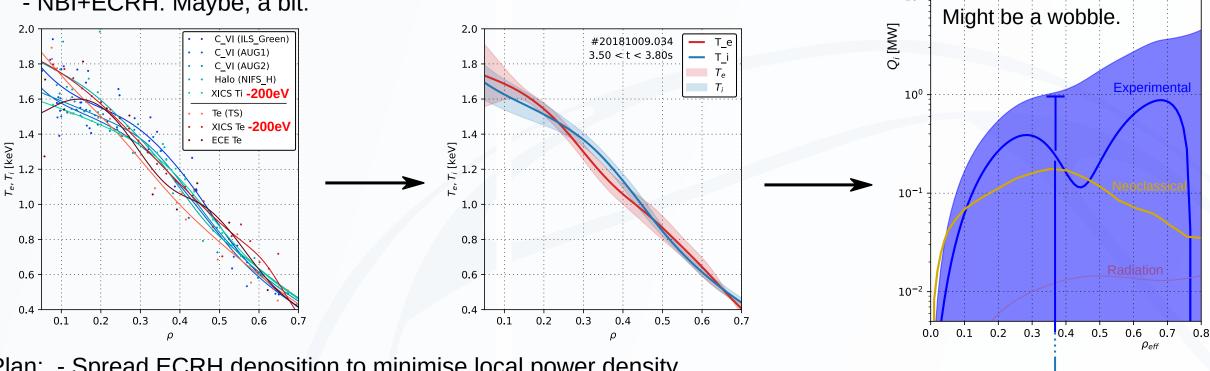
### Proposals related to:

4) New measurements / use of

| Geiger/Swee | NBI heat pulse propagation     | Measurements with CXRS. Try to measure Qi.                                               |             | Maybe multiple proposals. Coordinated with<br>Weir:NBI electron transport |
|-------------|--------------------------------|------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------|
| Weir        | NBI electron channel transport | Heat pulse propagation studies with O2-ECRH modulation                                   | Measurement | Coordinated with Geiger:NBI HPP                                           |
| Ford        | Maximise e-i coupling          | Obtained minimum possible Te-Ti to validate and determine offsets of TS, ECE, XICS, CXRS |             | Partially covered by diagnostic commissioning in E3-DIA                   |

### Optimise for electron-ion coupling




Might be neoclassical!



- At high collisionality,  $Q_i$  and  $Q_e$  from power balance only possible if  $T_e$  -  $T_i$  accurate to ~30eV (definitely not!).

- Pure NBI: Basically no chance

- NBI+ECRH: Maybe, a bit:



Plan: - Spread ECRH deposition to minimise local power density.

- Long stable ECRH plasmas with range of densities from just below cut-off to well above with O2.

- Carefully optimise for all diagnostics simultaneously:

CXRS: Ar and He puffs. NBI blips alternating Q7,Q8,(Q3,Q4) for CXRS XICS: Ar puff.

ECE:  $n_e$  below cut-off. TS: ....



-- End --