

Ion heating and thermal confinement: Routes to higher T_i

W7-X Workshop 2019

O. P. Ford¹, S. Bozhenkov¹, M.Beurskens¹,

- G. Fuchert¹, D. Hartmann¹, A. Langenberg¹, S. Lazerson²,
- R. Lunsford², P. McNeely¹, N. Pablant², N. Rust¹, R. Wolf¹

1: Max-Planck Institut für Plasmaphysik, Greifswald, Germany 2: PPPL, NJ, US

T_i profile resilience: ECRH

- Core T_i stays within same range and with similar gradients regardless of P_{ei} / electron-ion coupling.
- Effective T_i limit ~ 1.9 keV XICS (1.6keV CXRS)
- Exceptions:
 - 1) High-Performance pellet discharges
 - 2) Some particular low $\mathsf{P}_{\mathsf{ECRH}}$ cases.

T_i profile resilience: Non-stationary

- Core T_i stays within same range and with similar gradients regardless of P_{ei} / electron-ion coupling.
- Effective T_i limit ~ 1.9 keV XICS (1.6keV CXRS)
- Exceptions:
 - 1) High-Performance pellet discharges
 - 2) Some particular low $\mathsf{P}_{\mathsf{ECRH}}$ cases.
- All ECRH plasmas, including 'non-stationary': A little noisier, but no significant change.

- NBI adds significant direct ion heating (> 50%) but does not raise $T_{i.}$
- Consistent with the existence of a critical T_i gradient.
- Exceptions:
 - 1) 'Under powered' plasmas: Little/no ECRH, so T_i below limit.
 - 2) Some specific cases look at CXRS for detail.

XICS --> CXRS

- CXRS gives higher resolution data, but only with NBI (~200 shots)
- Trend is less obvious, but CXRS profiles don't change the situation.

Case 1: NBI + O2

- NBI creates peaked density profiles with steadily increasing density and impurities.
- We can use low power ECRH to control density level, expel impurities and increase T_{e.} (S62/olfo_012)
- Core density drops after O2 reintroduction and C is partially expelled (See talk N. Tamura)
- ECRH kills otherwise stable peaked density T_i drops back below limit.

Case 1: NBI + O2 - Profiles

From CXRS data we can see where T_i gradients are comapred to n_e .

- Coincidence of gradients would support turbulence picture (see talk A. von Stechow)
- Matches approximately in r_{eff} needs *careful* examination of n_e profile data.
- $\rm T_i$ response delayed in time to $\rm n_e.$

Case 2: NBI into collapse

- Observed that NBI after ECRH step-down can rise T_i.
- Extreme effect when NBI starts at plasma collapse, which also generates a peaked density profile.
- State is transient and retreats back towards normal maximum (as pellets)

Profiles - NBI into collapse

From CXRS data we can see where T_i gradients are comapred to n_e .

- Coincidence of gradients would support turbulence picture (see. von Stechow)

 $n_{\rm e}$ profiles only marginally able to support idea.

Profiles - Pellets (boz_010)

- From CXRS data we can see where T_i gradients are comapred to n_e .
- Conincidence of gradients would support turbulence picture (see. von Stechow)
- n_e gradient region appears wider.

Boron powder injection

- Steepening of $n_{\rm e}$ gradient by reduction of edge $n_{\rm e}.$
- Should consider if strong edge seeding could be used to control edge $n_{\rm e}.$

Density Peaking

- Density peaking is common to all observed cases of $T_i > 1.9$ keV XICS.
- Currently seen in:
 - 1) High performance pellets shots
 - 2) NBI
 - 3) Spontaneous slowly rising cases in ECRH
 - 4) Boron powder dropper.
 - 5) Some TESPEL cases.

Stationary(ish) cases

- Can we maintain sufficient density peaking?
- Cases so far have all been transient, but there are some almost stationary/stable cases, albeit with low power.

NBI at low ECRH: (but with slowly rising core density)

- Immediately after boronisation.

- Very stationary: ~ x10s seconds

- Low edge density leads to steep gradient.

Stationary cases

The two low-power ECRH cases from the main database:

0.7

Stationary cases

Routes to $T_i > 1.6 \text{keV}$

- Ti will remain at 1.6keV in gas-fuelled ECRH plasmas, regardless of increase in P_{tot} or n_e .
- To improve it, we need to diversify our approach.

Possible routes:

1) Density profile control

- 1) Pellets 2) NBI 3) Edge impurity seeding?
- 2) Turbulence optimised magnetic configurations.
- 3) ITG Stabilisation with ICRH
- 4) Transport barriers: i.e. 'H-mode might happen' No observation yet, but L-H usually comes with higher power.

Only #1 has been shown so far, so...

Density profile diagnosis/control may be critical to high beta operation.

We should start to examine:

- 1) How does n_e gradient affect achievable Ti --> TG Turbulence.
 - We see various cases with very different n_e/T_i profiles but same qualitative effect.
- 2) Is the n_e profile sufficiently well diagnosed for the necessary gradient calculation?
- 3) How can we actuate the density profile?
- 4) Can this be done in steady-state?
- 5) Is this compatible with other steady-state requirements? (e.g. detachment, impurity control)

IPP

Performance of stationary ECRH plasmas

- no or very weak configuration dependence
- * mainly consistent with the ISS04-scaling (can be below, see G. Fuchert)
- hardly any dependence for the ion temperature

S. Bozhenkov, Ion temperatures, E3-Klausur, 28.03.2019

Scaling-up

Given the ISS04 scaling one can roughly see what parameters we can achieve with more heating power, assuming the same plasma regime (note, that the ion temperature is fixed):

$$\tau \sim n^{1/2} \cdot P^{-1/2}, n_{max} \sim P^{1/2}$$
$$W_{dia} = P \cdot \tau \sim n^{1/2} \cdot P^{1/2} \leq P^{3/4}$$
$$n \cdot T_i \cdot \tau \sim n \cdot \tau \sim n^{3/2} P^{-1/2} \leq P^{1/4}$$

But, we have almost reached the O2-limit (1.5 vs 1.8), i.e. from certain point the density will be fixed:

$$\tau \sim P^{-1/2}, n_{max} = n_{limit}$$
$$W_{dia} = P \cdot \tau \sim P^{1/2}$$
$$n \cdot T_i \cdot \tau \sim n \cdot \tau \sim P^{-1/2}$$

Pellet trajectories

Boron powder injection

XICS --> CXRS

- CXRS gives higher resolution data, but only where NBI is on (~200 shots)
- To compare the two, we need to adjust for \sim 250±150eV higher core XICS T_i values:

TG Fast lons **NBI Modelling**

Beam deposition (T.W.C.Neelis)

Measured beam deposition (ignoring Halo CX broadening) may partly explain central peaking:

Electron density increase/Particle deposition rate 1e20

