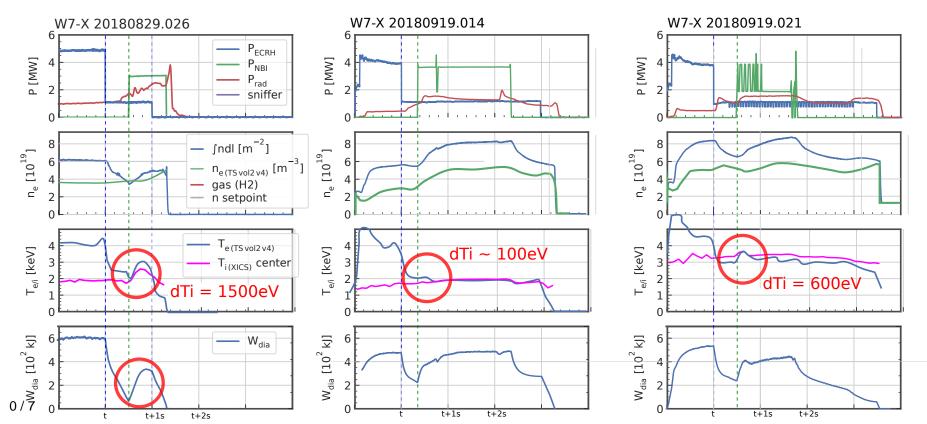
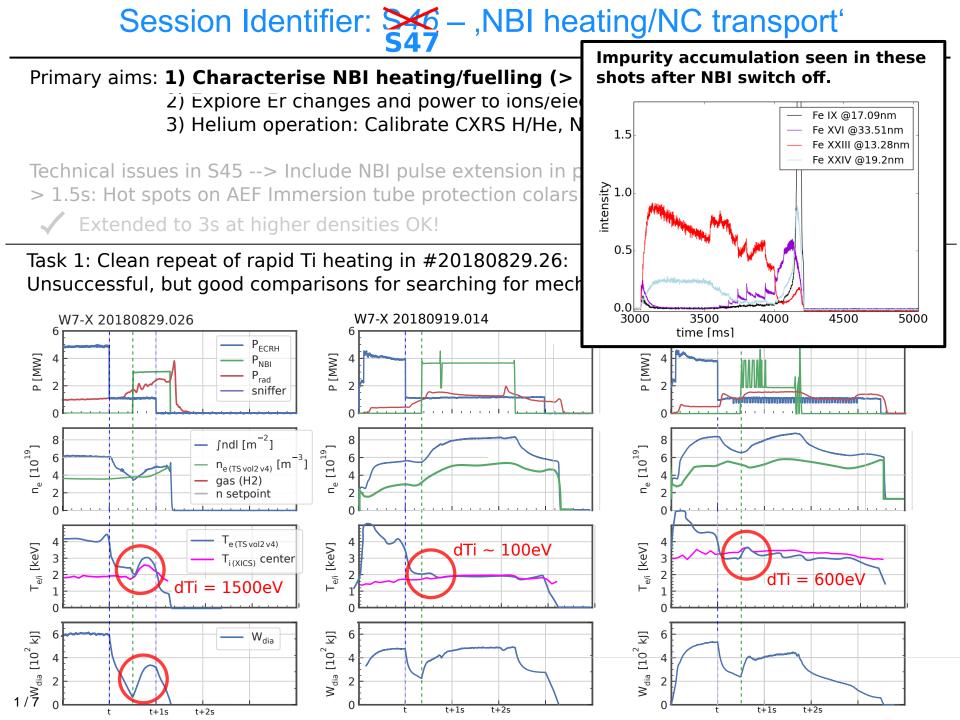
Session Identifier: 349 – ,NBI heating/NC transport

Primary aims: 1) Characterise NBI heating/fuelling (> 1sec NBI)

2) Explore Er changes and power to ions/electrons with NBI vs ECRH

3) Helium operation: Calibrate CXRS H/He, NBI into He, He/H Transport

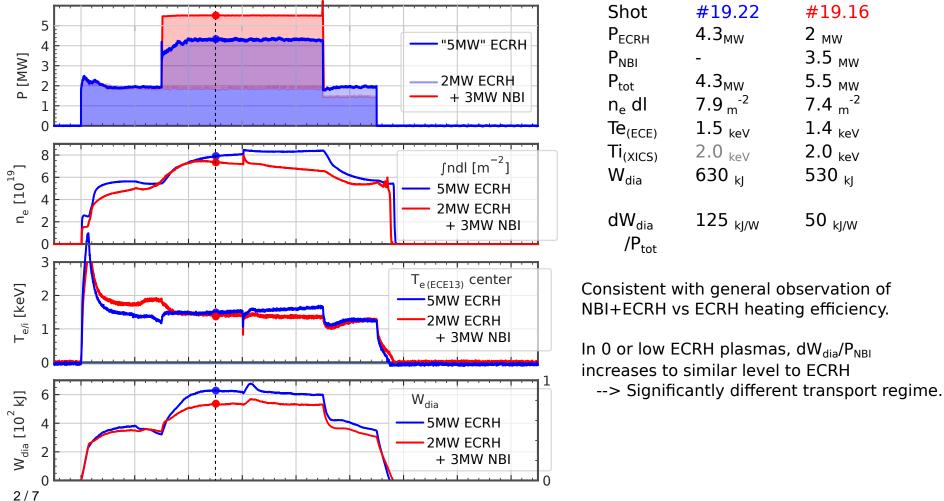

Technical issues in S45 --> Include NBI pulse extension in parallel.


> 1.5s: Hot spots on AEF Immersion tube protection colars from fast ions. OK for $n_e >$ 5e19.

Extended to 3s at higher densities OK!

Task 1: Clean repeat of rapid Ti heating in #20180829.26:

Unsuccessful, but good comparisons for searching for mechanism: 2 with, 1 partial, 2 without.



Session Identifier: 346 – ,NBI heating/NC transport

Primary aims: 1) Characterise NBI heating/fuelling (> 1sec NBI)

Separate fuelling and heating: Compare 3MW additional ECRH vs NBI with matched density. **Partial:**

- 1) Gyrotrons failures in 5MW ECRH case
- 2) Slight mismatch in density.

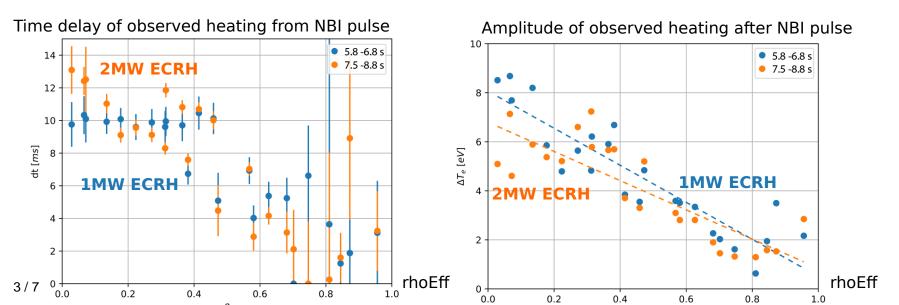
Session Identifier: 346 – ,NBI heating/NC transport

Primary aims: 1) Characterise NBI heating/fuelling (> 1sec NBI)

Fuelling: Attempt NBI into peaked ne profile from pellets.

Failed: Too few pellets / too high initial density --> Not peaked profile.

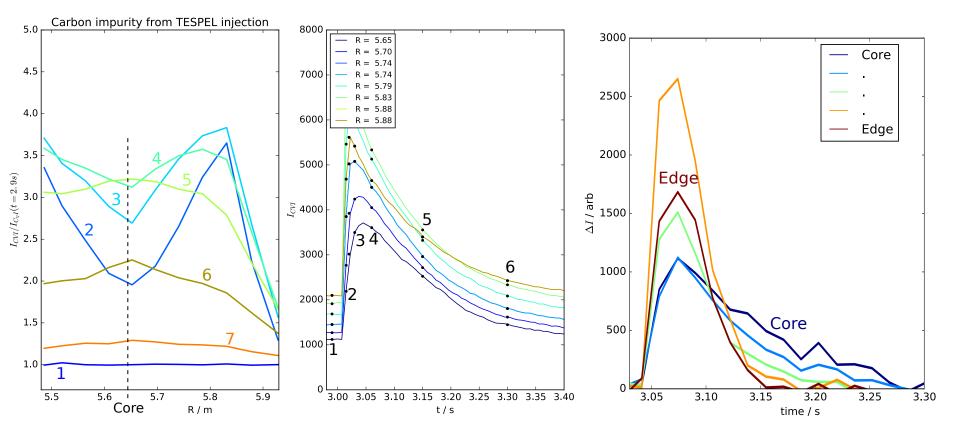
but later Success: BES data acquired in pure NBI shot #19.33 with very peaked core ne.


NBI heating/fast ion studies with NBI modulation:

Partial: Only 1/3 shots possible due to time and 1/2 program due to NBI limit at low n_e .

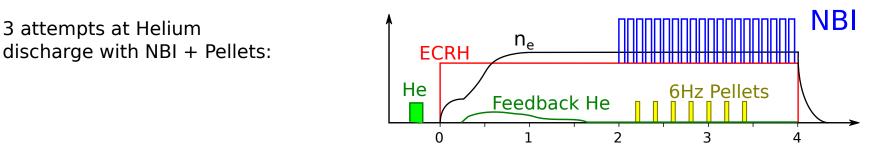
- No on/off axis comparison possible.
- No source comparison possible.

Some measurements also made in S48:


- dT_e modulation with NBI clearly seen. Slightly higher for lower ECRH power.
- Time delay supports hypothesis of differences in heat transport profile at reduced ECRH power:

Session Identifier: 349 – ,NBI heating/NC transport

liva_001: Low-Z impurity injection during NBI. Successful.


Lots of good high time resolution data recorded with Tespel (Carbon) and LBO (Boron Carbide) injections:

+ Indications of change in impurity accumulation behaviour in low/no ECRH shots. (see N. Pablant S48)

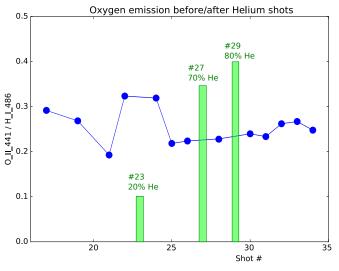
Session Identifier: MBI heating/NC transport

Primary aims: 3) Helium operation: Calibrate CXRS H/He, NBI into He, He/H Transport.

#19.23: 20% Helium, 8x10¹⁹ m⁻². Mostly hydrogen due to high recycling

- (3x Std. Ref. 0% He, 6.5, 5.5, 5.0 x10¹⁹ m⁻²)

#19.27: ~70% Helium, 8x10¹⁹ m⁻². OK. No Pellets.


 $(1x \text{ Std. Ref.} < 3\% \text{ He. } 4.0 \times 10^{19} \text{ m}^{-2})$

3 attempts at Helium

#19.29: ~80% Helium, 8x10¹⁹ m⁻², OK, No Pellets,

 $(1x \text{ Std. Ref.} < 5\% \text{ He}, 3.5 \times 10^{19} \text{ m}^{-2})$

He operation, impurity monitoring: **Complete.** H/He scan: Partial - 70%, 80% points. Full NBI into Helium: **Not performed** due to insufficient time. CXRS H/He Calibration: **Complete.** Low S/N, but OK. Will retry piggy-back this week. H/He transport study (K. Ida): Failed (no pellets)

Passive Spectroscopy / Filterscope: No significant rise in O II lines seen.

Session Identifier: - ,NBI heating/NC transport

Proposals status:

priority-I proposals				
proposal-ID	short title	status	open aspects (in case proposal is not finished)	
Dih_004, dih_006	NI21 commissioning	partially conducted	Missing full 4MW NBI into Helium and pulse extension.	
dih_008	NBI heating characterisation	fully conducted		
olfo_010	NBI fuelling characterisation	fully conducted	Data now collected in full range of ne, PECRH/PNBI (incl S25-30, S46, S48).	
olfo_016	Parallel ion flow measurements	fully conducted		
liva_001	Core low-Z impurities + transport	fully conducted		
bgeiger_004	Fast-ion transport using NBI modulation	partially conducted	Only 1/3 shots completed. Anything measured??	
npablant_014	Core energy and impurity Transport with NBI	partially conducted	Some additional data provided in support of S48. Density steps in pure NBI still missing.	
tere_002	Zonal flows	Not yet determined,		
rjose_001	Phi_1 effects on impurity transport	Not yet determined,		
ajvv_001	Passive FIDA measurements At W7-X	not attempted - (technical conflict)	Not measured in this session as spectrometer used for LBO.	
olfo_013 (K. Ida)	CXRS H/He ratio: Calibration	fully conducted	Poor S/N, but approximate calibration successful. Should be repeated at lower density.	
olfo_015 (K. Ida)	CXRS H/He ratio: H pellets into He	not conducted	No pellets injected. Requires 6Hz pellets+NBI into Helium.	

D · · ·	2
Priority	2:

	PHONLY Z:	y z:		
	olfo_011	XICS vs CXRS	fully conducted	Data now collected in full range of ne, PECRH/PNBI (incl S25-30, S46, S48).
	fwa_006	Config effect on heat transport (KJM)	not conducted	KJM not used due to baffle heat loads.
1	thomsen_005	MHD stability survey	Not yet determined,	
	cbra_007	Asymmetries in 2D impurity emission	Not yet determined,	

Additional (interlaced non-NBI shots):

boz_011	Optimize the high energy discharge.		
boz_012	Config change of high energy discharge.	partially conducted	Some additional data collected.
baldzuhn_010 - <mark>6 / 7</mark>	Pellets into high energy discharge.		