

- Separation of ion and electron energy fluxes requires determination of power exchange term.
- At high collisionality ($n_e \sim 10^{20}$), this requires O(10eV) accruacy of ($T_e T_i$) profile, which has not yet been achieved.
- Best analysis so far for highest T_i gives range from: **A)** large Q_e with $Q_i \sim Q_i^{NC}$ to **B)** $Q_i \sim Q_e \gg Q^{NC}$.
- $Q_e >> Q_i \sim Q_{NC}$ would be consistent with with post-pellets experiments.
- However, neoclassical electron energy fluxes not supported by measurements.
 - --> Next campaign: Improvements in T_i profiles + heat wave measurements.

- Separation of ion and electron energy fluxes requires determination of power exchange term.
- At high collisionality ($n_e \sim 10^{20}$), this requires O(10eV) accruacy of ($T_e T_i$) profile, which has not yet been achieved.
- Best analysis so far for highest T_i gives range from: **A)** large Q_e with $Q_i \sim Q_i^{NC}$ to **B)** $Q_i \sim Q_e \gg Q^{NC}$.
- $Q_e >> Q_i \sim Q_{NC}$ would be consistent with with post-pellets experiments.
- However, neoclassical electron energy fluxes not supported by measurements.
 - --> Next campaign: Improvements in T_i profiles + heat wave measurements.

- Separation of ion and electron energy fluxes requires determination of power exchange term.
- At high collisionality ($n_e \sim 10^{20}$), this requires O(10eV) accruacy of ($T_e T_i$) profile, which has not yet been achieved.
- Best analysis so far for highest T_i gives range from: **A)** large Q_e with $Q_i \sim Q_i^{NC}$ to **B)** $Q_i \sim Q_e \gg Q^{NC}$.
- $Q_e >> Q_i \sim Q_{NC}$ would be consistent with with post-pellets experiments.
- However, neoclassical electron energy fluxes *not* supported by measurements.
 - --> Next campaign: Improvements in T_i profiles + heat wave measurements.

O. P. Ford et al. E3 Retreat, July 2021. Adapted from EPS 2021 talk

- Separation of ion and electron energy fluxes requires determination of power exchange term.
- At high collisionality ($n_e \sim 10^{20}$), this requires O(10eV) accruacy of ($T_e T_i$) profile, which has not yet been achieved.
- Best analysis so far for highest T_i gives range from: **A)** large Q_e with $Q_i \sim Q_i^{NC}$ to **B)** $Q_i \sim Q_e \gg Q^{NC}$.
- $Q_e >> Q_i \sim Q_{NC}$ would be consistent with with post-pellets experiments.
- However, neoclassical electron energy fluxes *not* supported by measurements.
 - --> Next campaign: Improvements in T_i profiles + heat wave measurements.

O. P. Ford et al. E3 Retreat, July 2021. Adapted from EPS 2021 talk

- Separation of ion and electron energy fluxes requires determination of power exchange term.
- At high collisionality ($n_e \sim 10^{20}$), this requires O(10eV) accruacy of ($T_e T_i$) profile, which has not yet been achieved.
- Best analysis so far for highest T_i gives range from: **A)** large Q_e with $Q_i \sim Q_i^{NC}$ to **B)** $Q_i \sim Q_e \gg Q^{NC}$.
- $Q_e >> Q_i \sim Q_{NC}$ would be consistent with with post-pellets experiments.
- However, neoclassical electron energy fluxes *not* supported by measurements.
 - --> Next campaign: Improvements in T_i profiles + heat wave measurements.

O. P. Ford et al. E3 Retreat, July 2021. Adapted from EPS 2021 talk

- Separation of ion and electron energy fluxes requires determination of power exchange term.
- At high collisionality ($n_e \sim 10^{20}$), this requires O(10eV) accruacy of ($T_e T_i$) profile, which has not yet been achieved.
- Best analysis so far for highest T_i gives range from: **A)** large Q_e with $Q_i \sim Q_i^{NC}$ to **B)** $Q_i \sim Q_e \gg Q^{NC}$.
- $Q_e >> Q_i \sim Q_{NC}$ would be consistent with with post-pellets experiments.
- However, neoclassical electron energy fluxes *not* supported by measurements.
 - --> Next campaign: Improvements in T_i profiles + heat wave measurements.

O. P. Ford et al. E3 Retreat, July 2021. Adapted from EPS 2021 talk

- Separation of ion and electron energy fluxes requires determination of power exchange term.
- At high collisionality ($n_e \sim 10^{20}$), this requires O(10eV) accruacy of ($T_e T_i$) profile, which has not yet been achieved.
- Best analysis so far for highest T_i gives range from: **A)** large Q_e with $Q_i \sim Q_i^{NC}$ to **B)** $Q_i \sim Q_e \gg Q^{NC}$.
- $Q_e >> Q_i \sim Q_{NC}$ would be consistent with with post-pellets experiments.
- However, neoclassical electron energy fluxes *not* supported by measurements.
 - --> Next campaign: Improvements in T_i profiles + heat wave measurements.

O. P. Ford et al. E3 Retreat, July 2021. Adapted from EPS 2021 talk

