

Particle and energy transport of the improved confinement NBI scenario at W7-X

O. P. Ford, S. Bannmann, M. Beurskens, S. Bozhenkov, T. Romba, T. Stange, M. Wappl

A. Alonso, C. Beidler, H. Braune, K.J. Brunner, G. Fuchert, D. Hartmann, J. Knauer, A. Langenberg, H.P. Laqua, S. Lazerson, S. Marsen, P. McNeely, N. Pablant, E. Pasch, V. Perseo, N. Rust, H. Smith, D. Zhang

24th International Stellarator Heliotron Workshop, Hiroshima, Japan

The Wendelstein 7-X Stellarator

Wendelstein 7-X:

- 5 period helixcal axis stellarator
- Optimised to reduce neoclassical transport
- Designed to demonstrate steady-state operation with continuous ECRH heating.
- Operation at high density: $n_e \sim 1.8 \times 10^{20} m^{-3}$

R_0	5.5 m	
а	0.5 m	
V	30 m ³	
B_0	≤ 3 T	
$l_a ~(~q_{95}^{-1})$	5/6 5/4	
	2024	2026+
pulse	200s	30 min
ECRH	7.5MW	10 MW
NBI	2.6MW	5.2MW
ICRH	-	1.5MW

Temperature

- Continuous ECRH heated.

- Steady-state

Result:

a)

10

- Flat n_e profiles

- Gas/recycling fuelled.

- Low, flat impurity density profiles

Density

- Core $T_i \le 1.5$ keV --> Turbulence dominates e + i heat fluxes.

#20180920.013

2.00s < t < 5.80s

Typical scenario for long pulse, divertor experiments, parameter scans etc:

Gas-fuelled ECRH discharges

#20180920.013

t=4.50s

1.2

Gas-fuelled ECRH discharges

Main ions:

- Neoclassics --> hollow, Experiment = flat
- Requires requires core anomalous pinch.
- Pinch is seen in some new gyrokinetic simulations in the roughly the right place.

[Thienpondt, Phys. Rev. Res. 5, L022053 (2023)]

- No quantitive match

(Difficult without measured neutral fuelling profile)

Impurities:

Neoclassics --> peaked, Experiment = flat Require strong anomalous flux to flatten (D >> $0.1m^2s^{-1}$). [T. Romba PPCF **65** 075011 (2023)]

Measured v, D in LBO injections show strong anomalous diffusion

[Swee Nucl. Fus. 64 086062 (2024), B. Geiger Nucl. Fus. 59 046009 (2019)]

Reduced turbulent transport scenarios

Varous plasma scenarios show effects of reduced turbulence:

- After pellets --> peaked n_e , peaked n_z --> neoclassical Q_i --> T_i > 1.5keV [S. Bozhenkov Nucl. Fusion **60** 066011 (2020)]
- Impurity pellets, boron injection --> peaked n_e --> T_i > 1.5 keV [R. Lunsford Phys. Plas. 28 082506 (2021)]
- Some low power ECRH --> Spontaneous peaked n_e, n_Z [D. Zhang PPCF 65 105006 (2023)]

NBI (±ECRH) Scenarios

 τ_{ei}/τ_E

2.00

- 1.75

1.50

1.25

- 1.00

0.75

0.50

0.25

0.00

NBI (±ECRH) - Anomalous heat diffusivity

- Not possible to separate Q_{i} , Q_{e} due to high collisionality and similar heating effect of NBI - $P_{e} \sim P_{i}$.

- Look at combined χ_{eff} in gradient region ($\rho \sim 0.4$) reveals two branches: Dominant ECRH: $\chi_{eff} \sim 1 \text{ m}^2 \text{s}^{-1}$ as in pure ECRH scenarios [M. Beurskens, Nucl. Fus. 61 116072 (2021)]. Dominant NBI: $\chi_{eff} \sim 0.25 \text{ m}^2 \text{s}^{-1}$

- Pure NBI has reduced χ_{eff} , but much broader power deposition results in similar ∇T_i . (and T_{i0})
- Mixed NBI with low PECRH maintain $\chi_{eff} \sim 0.25$ and exploit it for higher ∇T_i .
- All plasmas with a/L_{ne} > 1.0 have lower $\chi_{\text{eff}}.$
- Without additional ECRH, NBI plasmas can undergo radiation collapse.

[O. Ford Nucl. Fus. 64 086067 (2024)]

- Density gradient builds up in pure NBI phase, which is exploited with reintroduction of O2 ECRH at high ne.

- Density peaking accelerates at a given time after switch to pure NBI --> Particle transport changes.
- Impurities accumulate from this time, almost entirely determined by neoclassical transport. [T.Romba Nucl. Fus. **63** 076023 (2023)] (see talk by T. Romba)
- Reintroduced ECRH stops density peaking or reduces it, and flushes out impurities.

[O. Ford Nucl. Fus. 64 086067 (2024)]

- Particle balance during pure NBI phase shows:
 - Initially significant **outward** anomalous flux (opposite to ECRH case) --> slow n_e rise.
 - Sudden drop in particle flux with no external changes --> fast n_e rise.

 Drops to apparently neoclassical flux level.

Really no tubulent flux??

- Increases again shortly afterwards.
- Increases again at ECRH reinroduction, reducing n_e a little.

[O. Ford Nucl. Fus. 64 086067 (2024)]

Pure NBI - Particle transport

Pure NBI - Radial Electric Field

- E_r affects NC transport and can play a strong role in global transport changes, especially at low collisionality. $T_e >> T_i -->$ 'Electron root'
- NBI discharges all ion root with no significant E_r changes at onset time (measured or NC)

Wendelsteil

OP2.1 (2023) campaign

In the 2022/3 campaign:

- 1) Reintroduction scenario repeated multiple time in multiple magnetic configuration.
- 2) Confirmation of threshold behaviour NBI with low initial density never shows strong peaking:

In the 2022/3 campaign:

3) Scans of ECRH power at fixed reintroduction time - varying pump-out effect.

4) (Low - mid - high) -mirror configurations: - Density rise in NBI phase almost identical.

- Different pump-out effect of ECRH

Balancing ECRH power

2023 experiments pushed to higher ECRH power to take advantage of reduced heat diffusivity - $\chi_{eff} \sim 0.25$ maintained despite x2 higher Q_{anom} . (as high as some turbulent ECRH-only shots) - Spontaneous back-transition to high transport observed as ECRH reduces density gradient.

ECRH control

Challenge: Needs dynamic active control of ECRH level:

- Too much --> Loss of density gradient --> back-transition
- Too little --> Too high density, low P/n, impurity accumulation --> radiation collapse.

Achieved performance

- Predictions made from 2018 data using transport simulation (NTSS) First point matched in 2023!
- Highest ECRH power in FMM configuration still does flush out density --> Higher n_e --> high W_{dia} --> Matches record stored energy (W_{dia}) for W7-X, but for $t >> \tau_E$

[Langenberg, Phys. Plas. **31** 052502 (2024)].

Summary

- ECRH+Gas fuelling: Turbulence dominated heat transport, main ion and impurity transport.
- Various scenarious with peaked density profile --> reduced heat transport.
- Dominant NBI plasmas show $\chi_{eff} \sim 0.25 \ m^2 s^{-1}$, 4 times lower than dominant ECRH.
- D_{anom} of main ions drops spontaneously during pure NBI, leading to accelerated peaking. Impurity transport is fully neoclassical from this point on.
- Reduced heat diffusivity can be exploided by reintroducing a low ECRH power at high a/L_n .
- Reintroduction scenario reproduced and refined in 2023 experiments.
 - Extend to ECRH power, giving higher ∇T_i and core T_i well above 1.5 keV.
 - Density pump-out by too-high ECRH leads to back-transition to high χ_{eff} .
 - NTSS simulations of predicated doubling of ECRH power well matched by experiment.
 - Record level of stored energy (marginally above pellets experiments) held for > 2s.

Some text