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- Introduction to IMSE.
- ASDEX Upgrade Instrument.

- 2D measurements with Axisymmetry.
Mathmatically.
Tomographically.

- W7X Instrument.
Difficulites for Stellarators.
Bayesian Inference using Funtion Parameterisation.
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Introduction - Motional Stark Effect

05— Neutral beam atoms injected into plasma.
Excited by plasma, then emit Ha/Da radiation.
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Background Da (not shown).
Spectrum from a single plxel
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Stark split by electric field in rest frame of atom: Roughly: m polarised parallel to E.
E=vxB o polarised perp' to E.
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Savart Plates

We want a full 2D image of polarisation of Da emission from beam. Image

Objective Lens Polariser 4 Imaging Lens Plane (CCD)
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Savart Plates

Savart Plate: Angle dependent phase shift --> Interference pattern accross image.

Objective : Image PI |
: Savart Plate ge rlane
Object Lens FORIMERT e (CCD) |= :

Plane Lens

Oscillation amplitude proportional to polarisation angle.
I < 1+ cos20 cos(x) Polariser

Savart Plate

but o and  are orthogonal.
If they were monochromatic, Object Plane

they would cancel out... \
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Double Spatial Hetrodyne

I
MSE m and polarised o are A o
orthogonal and always the same
intensity, but they have different

spectral profiles.
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Ampltiude

For large T, different wavelengths
have different phases - decoherence.

Add a delay plate to introduce the A
best tp - where m and o combine constructivly.

Amplitude dependant on contrast. To separate spectral this from 3,
add a second Savart plate at 459, to create a 2nd carrier:

Polariser

Savart Plate

Fixed Delay Plate
Savart Plate

**x All the B's should be

Object Plane

\ T
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Double Spatial Hetrodyne
MSE 7 and polarised o are | A - %A
orthogonal and always the same 4:;3
intensity, but they have different Q
spectral profiles. €
< C nett

contrast

For large T, different wavelengths
have different phases - decoherence.

>
T

Add a delay plate to introduce the
best 1o - where m and o combine constructivly.

>Y

Amplitude also dependent on contrast.

I 1+ (cos20 cos(x)

To separate spectral contrast ¢ from 6, Polariser

add a second Savart plate at 459,

to create a 2nd carrier: Fixed Delay Plate
Savart Plate

Savart Plate

Object Plane
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Savart Plates

(For the record: This is the 'Ampltiude
Modulated Double Spatial Hetrodyne' system).

The equation for the image is now:

I :@[1 +@( ca&@cos(az) + %szﬁ@cas(w —y) — %sir@cas(w +y))]
Polarisation Angle |

Intensity] Contras

By demodulating the image in x and y, we can find 6, /, and .

Spatial Resolution: 7
Highest frequencies in 6, 0 A8 (v + )
are what can be separated : >
from the other components: " ‘
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Forward Model

Developed several components for the Bayesian/Forward modelling framework

= Motional Stark Effect Emission (Gen.)
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AUG: 6 Spatial Resolution

The recovered 6 are really <6> over the LOS. Spatial resolution is a combination of
pixel-pixel averaging due to modulation (1cm) and the LOS averaging.
The LOS averaging varies over image (X,y):

Z/m | y
FWHM of MSE Intensity
L moments of R,Z
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.0.05— | Towards edges, the observation angle averages
over ~5cm. With enough data (which we hgve)
this might be reduced by deconvolution _ g : % .
(which is inherent in the Bayesian analysis) Spatial resolution in R is-especially

_ | | good mid-radius (~1cm).

\ \ \ \ \ \ \ |
1.5 1.6 1.7 1.8 1.9 2.0 2.1 R/m

-0.10 —

8/13



What do 2D

Recovery of plasma current - Axisymmetric

To final objective is to measure plasma current .

For normal 1D measurements: not possible so 6 used as a constraint for equilibrium.
Does having 2D measurements make it possible to calculate j without equilibrium?

Assuming toroidal symmetry, the current is:

0B,

. 2 R
~poje = 5F + mozz Jo R'B:(R,Z)dR

Assume we know B¢ as the vacuum field, then we can calulate Bz from 6.

However, we only see where the MSE emission is, so can only integrate from some R = R:

: 0%y (Ro,Z 2 rR
—HoJ¢ :@{% ¢§Z§ §+ %8822 fRO R’BZ(R’,Z)dR)

This we have Function of Z that

with 1D MSE. we cannot know.
1 L g Assume we will
161 Calculated jphi. not see the
. dBz/dr only. edge due to
12 background Da

] Original jphi.

8.0 l
For this exercise, fix unknown j(Z) term to match

true values at grid left/right edge. s %

»
o

The new information. ~10%

o
o

. T T T T T T T T T T T T T T T T T T T T
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The new term gives localisation
of current in Z (~via curvature of field).

With the new term, we can in theory calculate j¢ ra
profiles except for a fixed constant
(because the f(Z) term is still not known).

In practice, d2B/d? is much too noisy.
However, we also gain dBz/dR at different Zs.

Together with normal coil measurements,
it is now part of a complex tomography problem
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By current tomography...

Add model for AUG PF coils, pickups etc to Minerva. Can now do
Current Tomorgraphy and Bayesian Equilibrium for AUG.

1) Magnetics only: We have the usual tomography situation:

Jphi uncertainty Magnetics Only on Z=0.1
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(but B and flux still

o[ PUD, .1 £ ]] T AT AT T (Almost) no prior/regularisation

(Almost) infinite uncertainty

good)

S VR Each case has 900 measurements at o = 10mT.
So difference is only in the type of information.
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2) Normal MSE system? " -

30 X Bz at 30 3) IMSE System:
positions along 30x30 grid of Bz
NBI centre. measurements.
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4) +Br (for interest)
30x15 grid of Bz
30x16 grid of Br.
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Forward Model (W7X)
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Geometry (W7X)

Best view of NBI to reduce cross-surface integration: from port AEA21, looking along const Z plane.
More tangential lower beam gives best Doppler shift --> Better image fringe contrast.
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View is almost to surfaces here --> Reasonable flux surface resolution:
Beam attenuation is rapid due to high electron density so only outboard side is seen:
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