

Motional Stark Effect Coherence Imaging for ASDEX Upgrade and W7X.

Assesment of capabilities using Bayesian Tomography

O. P. Ford,¹ J. Howard,² J. Svensson,¹ R. Wolf¹

1: Max-Planck Institut für Plasmaphysik, Greifswald, Germany

- 2: Plasma Research Laboratory, Australian National University, Canberra
- Introduction to IMSE.
- ASDEX Upgrade Instrument.
- 2D measurements with Axisymmetry. Mathmatically. Tomographically.

- W7X Instrument.

Difficulites for Stellarators.

Bayesian Inference using Funtion Parameterisation.

Max-Planck Institut für Plasmaphysik 2D Current Measurements at AUG with Coherence Imaging.

Introduction - Motional Stark Effect

Neutral beam atoms injected into plasma. Excited by plasma, then emit $H\alpha/D\alpha$ radiation.

Complications:

Atoms with different injection energy: different Doppler shift. Doppler broadening: Beam divergence, line integration etc. Background D α (not shown).

Spectrum from a single pixel:

2D Current Measurements at AUG with Coherence Imaging.

Savart Plates

3/13\frac{1 0}{2} \left[1 + \zeta \left(\: cos 2\theta \: cos(x) + sin 2\theta \: sin(x) \: sin(y) \: \right) \right]\$

Savart Plates

Savart Plate: Angle dependent phase shift --> Interference pattern accross image.

Oscillation amplitude proportional to polarisation angle.

 $I \propto 1 + \cos 2\theta \cos(x)$

but σ and π are orthogonal. If they were monochromatic, they would cancel out...

2D Current Measurements at AUG with Coherence Imaging.

Double Spatial Hetrodyne

π

σ

π

MSE π and polarised σ are orthogonal and always the same intensity, but they have different spectral profiles.

For large τ , different wavelengths have different phases - decoherence.

Add a delay plate to introduce the best τ_0 - where π and σ combine constructivly.

Amplitude dependant on contrast. To separate spectral this from β , add a second Savart plate at 45°, to create a 2nd carrier:

2D Current Measurements at AUG with Coherence Imaging.

Double Spatial Hetrodyne

MSE π and polarised σ are orthogonal and always the same intensity, but they have different spectral profiles.

For large τ , different wavelengths have different phases - decoherence.

Add a delay plate to introduce the best τ_0 - where π and σ combine constructively.

Amplitude also dependent on contrast.

 $I \propto 1 + \zeta \cos 2\theta \cos(x)$

Max-Planck Institut für Plasmaphysik 2D Current Measurements at AUG with Coherence Imaging.

(For the record: This is the '*Ampltiude Modulated Double Spatial Hetrodyne*' system).

The equation for the image is now:

Max-Planck Institut für Plasmaphysik 2D Current Measurements at AUG with Coherence Imaging.

Forward Model

Developed several components for the Bayesian/Forward modelling framework

AUG: θ Spatial Resolution

The recovered θ are really < θ > over the LOS. Spatial resolution is a combination of pixel-pixel averaging due to modulation (1cm) and the LOS averaging. The LOS averaging varies over image (x,y):

1.2

8.0

4.0

0.0

Recovery of plasma current - Axisymmetric

To final objective is to measure plasma current *j*.

For normal 1D measurements: not possible so θ used as a constraint for equilibrium. Does having 2D measurements make it possible to calculate *j* without equilibrium?

Assuming toroidal symmetry, the current is:

$$-\mu_0 j_\phi = \frac{\partial B_z}{\partial R} + \frac{1}{R} \frac{\partial^2}{\partial Z^2} \int_0^R R' B_z(R', Z) \, dR'$$

Assume we know B_{ϕ} as the vacuum field, then we can calulate B_Z from θ .

However, we only see where the MSE emission is, so can only integrate from some $R = R_0$:

By current tomography...

Add model for AUG PF coils, pickups etc to Minerva. Can now do Current Tomorgraphy and Bayesian Equilibrium for AUG.

2D Current Measurements at AUG with Coherence Imaging.

Forward Model (W7X)

Geometry (W7X)

Best view of NBI to reduce cross-surface integration: from port AEA21, looking along const Z plane. More tangential lower beam gives best Doppler shift --> Better image fringe contrast.

View is almost to surfaces here --> Reasonable flux surface resolution: Beam attenuation is rapid due to high electron density so only outboard side is seen: