- 10th Asia Pacific Plasma Theory Conference

Current Distribution Inference from MSE Coherence Imaging using Bayesian Tomography

(Assesment of IMSE capabilities for Tokamaks and Stellartors - ASDEX Upgrade and W7X)

- O. P. Ford, J. Howard, J. Svensson, R. Wolf
 - 1: Max-Planck Institut für Plasmaphysik, Greifswald, Germany
 - 2: Plasma Research Laboratory, Australian National University, Canberra
 - Imaging MSE. Introduction Forward Model
 - ASDEX Upgrade Instrument. 2D measurements under Axisymmetry. Current Tomography.
 - W7X Instrument. **Capability Analysis** Bayesian Inference using Funtion Parameterisation.

Emission Intensity

Total MSE

Introduction - Motional Stark Effect

Neutral beam atoms injected into plasma. Excited by plasma, then emit $H\alpha/D\alpha$ radiation.

Spectrum from a single pixel:

Complications:

Energy components, Doppler broadening, Beam divergence, Line integration etc.

Stark split by electric field in rest frame of atom:

$$E = v \times B$$

Roughly: π polarised parallel to E. σ polarised perp' to E.

Inference Imaging with Savart Plates

Savart Plate: Angle dependent phase shift --> Interference pattern accross image.

Oscillation amplitude proportional to polarisation angle.

$$I \propto 1 + \cos 2\theta \cos(x) - \cos 2\theta \cos(x)$$

but σ and π are orthogonal. If they were monochromatic, they would cancel out...

CCD

Spectral Coherence

 π and σ orthogonal and always the same intensity, but different spectral profiles.

For large τ , different wavelengths have different phases --> decoherence.

Add a delay plate to introduce the best τ_0 - where π and σ combine constructively.

Intensity π π Wavelength

but amplitude now also dependent on contrast:

$$I \propto 1 + \zeta \cos 2\theta \cos(x)$$

add another Savart plate at 450. Combined effect adds

2 extra terms:

Polariser Savart Plate Need to separate spectral contrast ζ from θ Fixed Delay Plate Savart Plate **Object Plane**

$$I \propto 1 + \zeta \cos 2\theta \cos(x) + \zeta \sin 2\theta \cos(x - y) - \zeta \sin 2\theta \cos(x + y)$$

Forward Model

Developed several components for the Bayesian / forward modelling framework (Minerva).

Current Distribution Inference from MSE
Coherence Imaging using Bayesian Tomography
ISHW / APPTC 2012

Savart Plates

(For the record: This is the 'Ampltiude Modulated Double Spatial Hetrodyne' system).

$$\frac{I}{I_0} = 1 + \zeta \cos 2\theta \cos(x) + \zeta \sin 2\theta \cos(x - y) - \zeta \sin 2\theta \cos(x + y)$$

$$\text{Contrast}$$

$$\text{Polarisation Angle}$$

$$\text{Polarisation Angle}$$

Recovery of plasma current - Axisymmetric

Final objective is plasma current - j(R, Z). Normally θ used as a constraint for equilibrium. With 2D measurements, can we calculate j without equilibrium?

Assuming toroidal symmetry:

$$-\mu_0 j_\phi = \frac{\partial B_z}{\partial R} + \frac{1}{R} \frac{\partial^2}{\partial Z^2} \int_0^R R' B_z(R', Z) dR'$$

Assume known B_{ϕ} (vacuum field), calulate B_{Z} from θ .

We only see where the MSE emission is, so can only integrate from some $R = R_0$:

$$-\mu_0 j_\phi = \underbrace{\frac{\partial B_z}{\partial R}}_{\text{This we have with 1D MSE.}} + \underbrace{\frac{1}{R} \frac{\partial^2 \psi(R_0,Z)}{\partial Z^2}}_{\text{Function of Z that we still cannot know.}} + \underbrace{\frac{1}{R} \frac{\partial^2}{\partial Z^2} \int_{R_0}^R R' B_z(R',Z) dR'}_{\text{The new term gives localisation of current in Z (~via curvature of field).}}_{\text{The new term gives localisation of current in Z (~via curvature of field).}}$$

~10% of $j\phi$ and measurement too noisy.

No: It still cannot be directly calculated.

However, we gain dBz/dR at different Zs. Complex tomography problem, but we may not need equilibrium...

Each case has 900 measurements at $\sigma = 10mT$. So difference is only in the **type** of information. **Conclusion:** 2D information greatly improves current inference ability, even *excluding* increase in data quantity.

Forward Model (W7X)

Geometry (W7X)

Best view of NBI to reduce cross-surface integration.

More tangential lower beam gives best Doppler shift --> Better image fringe contrast.

LOS is almost parallel to surfaces
--> Good flux surface resolution.

1.80

1.70

1.75

1.85

LOS depth (Distance from camera) / m

1.90

1.95

2.00

Demodulation (W7X)

Generated full forward modelled image, add 1% random noise and demodulate:

Demodulation not as good as AUG - possibly due to integration of wide range of θ with varying wavelength. Generated image is integration of images but demodulated assuming a single image.

Demodulation Response to jphi (W7X)

Demodulation not as good as AUG - probably due to integration of wide range of theta with varying wavelength. Generated image is integration of images but demodulated assuming a single image.

Inference of j_{ϕ} (W7X)

Can't do the current tomography in 3D (at present).

For a rough idea of the inference capability - use Function Parameterisation in forward model. Assume fixed/known pressure and coil currents and invert 40x30 polarisation angle map to j_{ϕ} , assuming we can reconstruct to $^+$ /- 0.14°.

the bootstrap current profile.
Including other magnetic diagnostics should make it even better.

2D Current Measurements at AUG with Coherence Imaging.

Summary

- Developed detailed modular forward models for AUG + W7X magnetics, Neutral Beams, MSE and IMSE camera systems.
- Full modelling of the IMSE system under development for ASDEX Upgrade and its capability to infer pitch angle.
- Assesment of ability to directly calculate current in Axisymmetric systems from 2D IMSE measurements.
- Simulated Bayesian inference of plasma current from IMSE in ASDEX, without the assumptions associated with equilibrium codes, shows a significant improvement over equivalent 1D measurements.
 - It is relatively easy to also include equilibrium (axisym, isotropic, flow-free) within the Bayesian analysis.
- Modelling of IMSE system for W7X and initial assesment of local average polarisation/pitch angle measurement.
- Assesment of inference of broad information about induced plasma currents in W7X.

1.70

1.75

LOS depth (Distance from camera) / m

1.95

2.00

1.80

1.75

1.70

1.85

LOS depth (Distance from camera) / m

1.90

1.95

2.00

