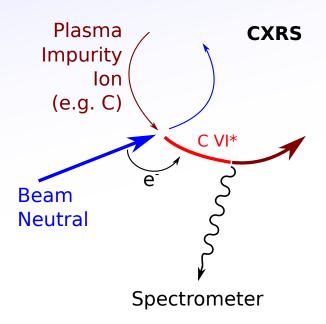
# Charge Exchange Recombination Spectroscopy (CXRS) on the Neutral Beam Injection (NBI)

(Ladungsaustauschspektroskopie am Neutralheizstrahl)

## **Impurity Group Meeting 16.12.16**

- O. P. Ford<sup>1</sup>, M. Beurskens<sup>1</sup>, C. Biedermann<sup>1</sup>, R. McDermott<sup>2</sup>, A. Kappatou<sup>2</sup>, R. Wolf<sup>1</sup>
  - 1: Max-Planck Institut für Plasmaphysik, Greifswald, Germany
  - 2: Max-Planck Institut für Plasmaphysik, Garching, Germany
  - CXRS Principle
  - Neutral injection at W7X
  - Diagnostic Overview
  - Expected Capabilites




## W7X CXRS on NBI. Impurity Transport Meeting

# **CXRS** Principle

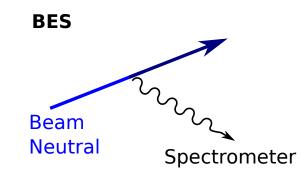
Charge Exchange Recombination Spectroscopy (CXRS) physics:

- 1) Neutral beam particles donate electrons to impurity/plasma ions.
- 2) Impurity ion left in excited state, emits photon.
- 3) Spectrum of collected photons give:
  - Impurity Densities (n<sub>z</sub>)
  - Impurity Temperature  $\sim$  Ion temperature ( $T_i$ )
  - Impurity Bulk Velocity --> Radial Electric Field (E<sub>r</sub>) + Toroidal Rotation ( $\omega_{\omega}$ )



+Beam Emission Spectroscopy (BES):

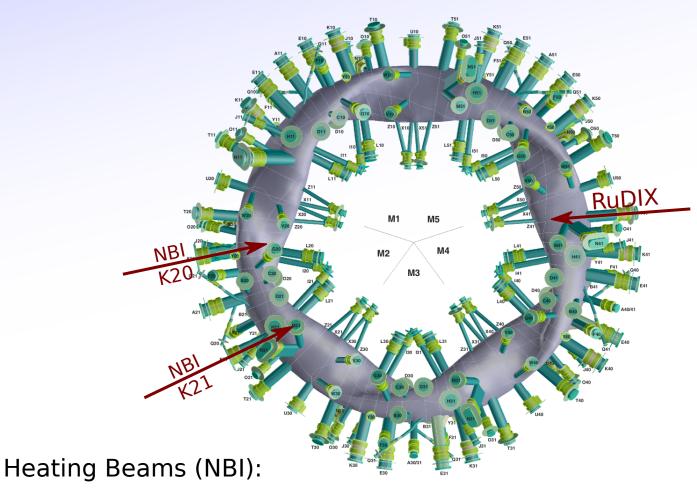
Direction observation of beam neutral emission gives beam density  $n_b$ , beam deposition and spatial calibration of optics.


Only diagnostic to give core measurements of: Core local impurity densities  $n_z$  (other than Argon) Toroidal rotation w<sub>ω</sub>

Beam density/deposition n<sub>b</sub>

Supplements XICS with localised measurements of:

T<sub>i</sub>: Localised measurements.


 $_{1/12}\mathsf{E}_{r}$ : Localised across most of profile.





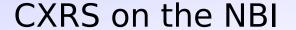
## **W7X Neutral Beams**

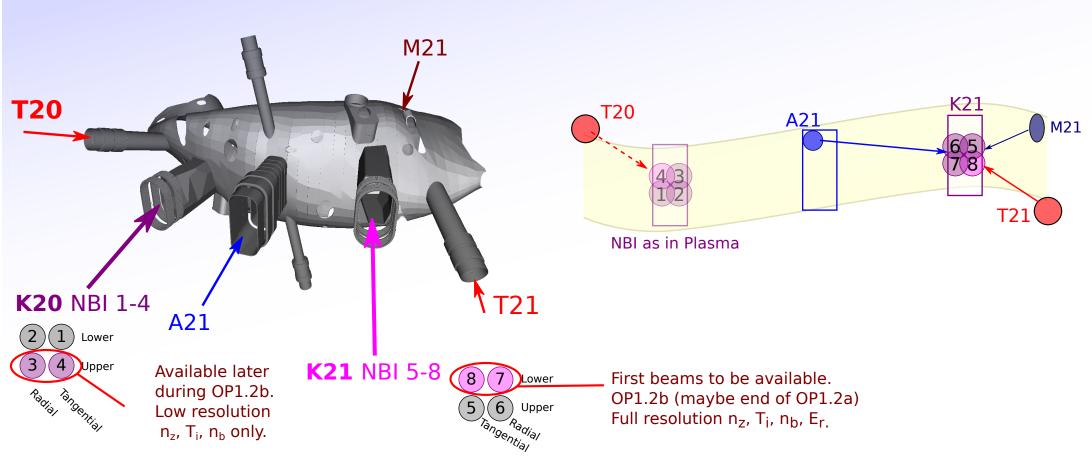
Two neutral beam systems foreseen for W7X:



Diagnostic Beam (RuDIX): (Module 4)

Can run effectively continuously (pulsed at low duty cycle)


Low-current (less perturbative) Available from OP2 (at the earliest)


(Module 2)

Max 10 seconds per box (7.5s for H, 10s for D) Very perturbative (>1MW)

2/12



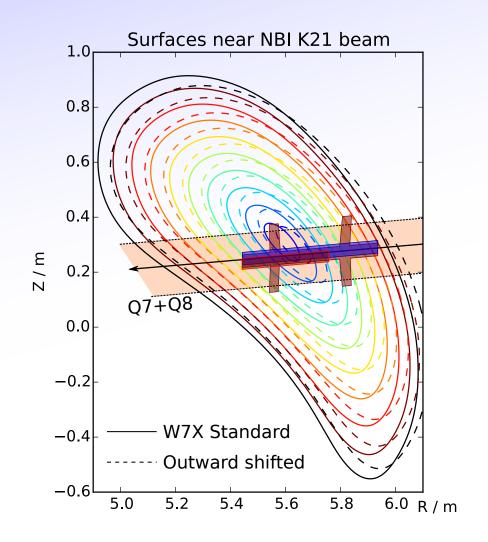


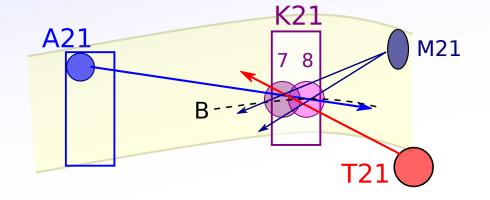


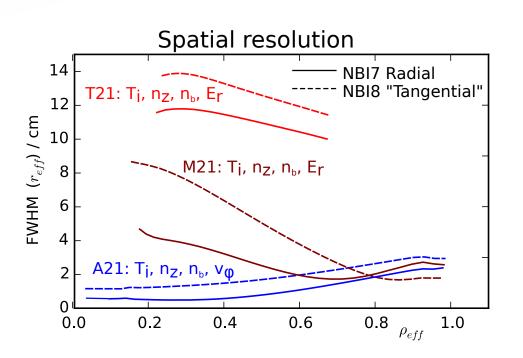
AEA21: High resolution, toroidally viewing system.

AEM21: 45° to toroidal. Primarily for Er.

AET20/21: Low resolution overview/cross-check. -45° to toroidal. 8 channels / box.


80 channels. OP1.2b+


80 channels. OP1.2a+


OP1.2a+



# **Spatial Resolution**



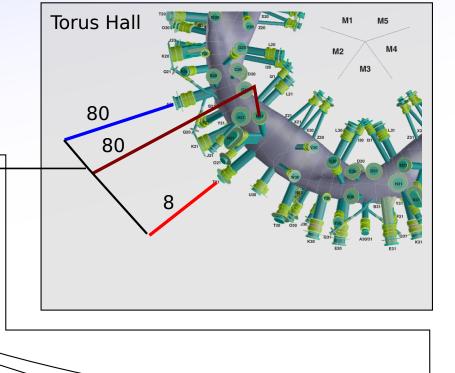




AEA21: High resolution, toroidally viewing system.

AEM21: 45° to toroidal. Primarily for Er.

ልቯ፻20/21: Low resolution overview/cross-check. -45° to toroidal. 8 channels / box.


80 channels. OP1.2b+ 80 channels. OP1.2a+ OP1.2a+



# System Components

Patch Panel
176 Channels

Three primary spectrometers measuring total 90 channels. Flexibility for which impurity is to be measured at which radial position and which view angle.



## High-etendue spectrometer.

3x Fixed wavelength:

H + Beam DensityC VI

He II

~30 channels

OP1.2a

ASDEX Upgrade Spectrometer 1.

Variable wavelength:

OP1.2a/b

B, N, C, (Ar, O)

~30 channels

ASDEX Upgrade Spectrometer 2.

Variable wavelength: FIDA, **B**, **N**, **C**, (**Ar**, **O**)

~30 channels

OP1.2a/b

NIFS Dual Channel Spectrometers

He/H studies.

~30 channels

OP1.2b

# W7X CXRS on NBI. **Impurity Transport Meeting**

# **Emission Lines**

The optics, fibres and CCD sensitivity should reasonable signal from 400 - 800nm. Collected lines observed or mentioned in the CXRS literature:

| 297.6 O_VIII<br>298.2 B_V | Not with the main system, but we could try something if these were |
|---------------------------|--------------------------------------------------------------------|
| 343.0 F_IX                | really desirable.                                                  |
| 343.3 C_VI                |                                                                    |
| 344.9 Ar_XVIII            |                                                                    |
| 348.8 O_VIII              |                                                                    |
| 388.7 N_VII               |                                                                    |
| 434.1 O_VIII              |                                                                    |
| 436.5 Ar_XVI              | Will look for this. Might see something                            |
| 452.45 S_XIV              |                                                                    |
| 468.58 Hell               | Fixed range. Always available.                                     |
| 479.3 Ar_XVII??           |                                                                    |
| 494.46 B_V                | Selectable. Very likely to work.                                   |

| 524.9 NeX    | Fixed range. Always available.                                                          |
|--------------|-----------------------------------------------------------------------------------------|
| 529.06 C_VI  | Fixed range. Always available.                                                          |
| 541.152 Hell |                                                                                         |
| 566.94 N_VII | Selectable. Very likely to work.                                                        |
| 570.2 S_XIV  |                                                                                         |
| 606.8 O_VIII | Selectable. Possible for high O content.  Measured at JET, but not enough signal at AUG |
| 608.5 N_VII  | Medsared de Jer, but not enough signal de Aoo                                           |
| 656.01 Hell  |                                                                                         |
| 656.28 HI    | Fixed range. Beam density + FIDA etc.                                                   |
| 706.8 S_XIV  |                                                                                         |
| 771.7 C_VI   |                                                                                         |
| 792.7 N_VII  |                                                                                         |



# **Expected Performance**

#### W7X CXRS based on the very successful CXRS on ASDEX Upgrade:

- o Same NBI
- Same spectrometers (steal one and use their design for two more)
- **o** Same fibres.
- Same Ion temperatures (T<sub>i</sub>).
- ~Same plasma cross-section (50-60cm core-edge).

#### Up to 4x higher electron density (n<sub>e</sub>) so:

- Lower signal in core (NBI attenuation)
- Much higher background (Bremsstrahlung)
- Higher impurity density (for the same concentration)
- Much lower velocities (E<sub>r</sub>) and higher sensitivity/accuracy required (> 5x better).
- + Slower typical dynamics (time resolution 100ms instead of 10ms is still useful).
- + Expect higher carbon content (AUG has W wall), but other impurities will be similar.

# Performance at AUG

At ASDEX Upgrade, they routinely measure He II, B V, C VI, N VII and produce n<sub>7</sub> profiles whenever the concentration is above ~0.2% n<sub>e</sub>.

#### Some examples:

1.0

0.5

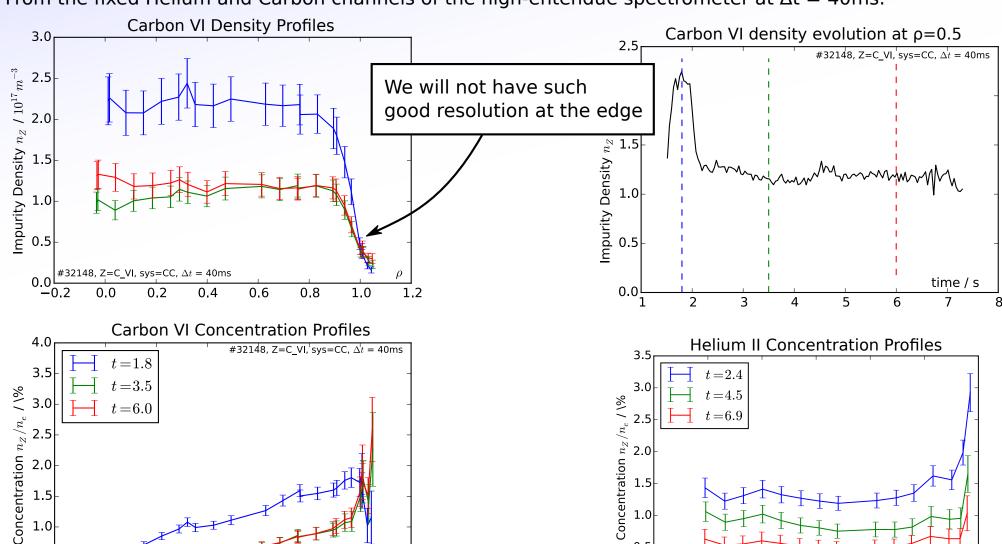
-0.2

0.0

0.2

0.4

0.8


0.6

1.0

1.2

8 / 12

1) From the fixed Helium and Carbon channels of the high-entendué spectrometer at  $\Delta t = 40$ ms:



0.5

0.0 \_0.2

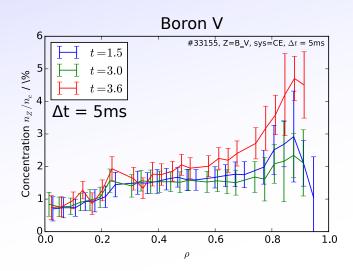
0.0

0.2

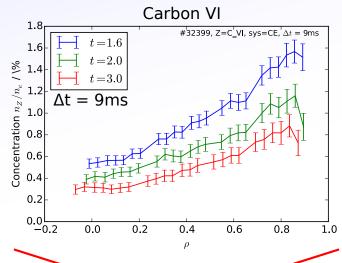
0.4

0.6

0.8

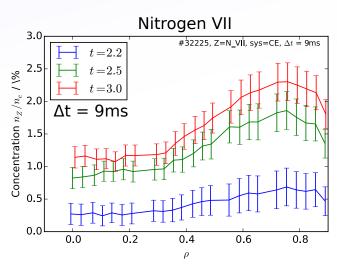

1.0



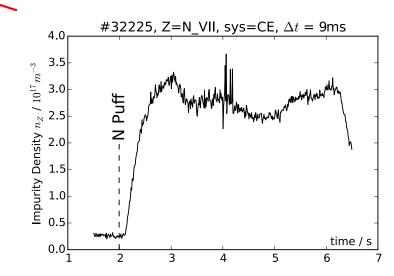

# Performance at AUG

#### Some examples:

2) From the variable wavelength ASDEX Upgrade spectrometers at  $\Delta t = 5$ -9ms:



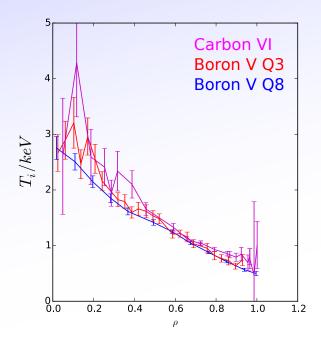

**Boron:** "After a boronization we have about 1% B in the machine, which drops to about 0.5% in about a day and then stays at 0.5% for at last a week."

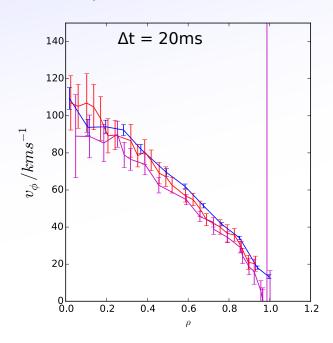



**Carbon:** "C after a boronization is <0.1% and returns to a more or less steady 0.2-0.35% within about a day after a boronization.."






**Nitrogen:** Generally only when puffing *N for seeding experiments.* 






# Performance at AUG

The systems all also provide regular  $T_i$  and  $v_{\phi}$  measurements:





Temperature measurements are generally very reliable and match between each species.

It's not clear how useful the  $v_{\phi}/v_{\theta}$  measurements will be at W7X given the much smaller values in Stellarators. The AUG systems can typically resolve  $\delta v = \pm 10$ km/s in the core and  $\pm 1$ km/s at the edge for  $\Delta t = 3$ ms - 10ms. Much longer time integration at W7X might help here.

# Summary

#### CXRS systems at W7X should provide:

n<sub>z</sub>: Impurity density profiles of Helium, Carbon, Boron, Nitrogen.

- At least profile shapes and time evolution. Absolute values too, but this will be harder to get right.
- We will try to look at Argon and Oxygen, but do not know if these will work.

T<sub>i</sub>: Routine provision of Ti profiles should not be difficult for the main species.

n<sub>b</sub>: Beam density / attenuation for all beams.

 $E_r$ : Maybe, at least to  $\pm 10$ kV/m but hopefully better.

 $\Delta r_{\text{eff}}$  < 3cm but hopefully down to ~1cm in core.

 $\Delta t \sim 10$  - 100ms. Faster might be possible but will depend on signal level and electron density.

- Only with NBI! We will try beam modulation / small blips but this will still have an effect on the plasma.

The design is still in progress and I still need input on what to optimise for with regard to impurity densities. Please tell me what is needed/desired...

- What is most important Good time resolution, spatial resolution or small uncertainties?
- Is profile shape useful without absolute density values?
- How useful would it be to look at Argon XVI and XVIII?