Charge Exchange Recombination Spectroscopy (CXRS) on the Neutral Beam Injection (NBI)

(Ladungsaustauschspektroskopie am Neutralheizstrahl)

Impurity Group Meeting 16.12.16

O. P. Ford¹, M. Beurskens¹, C. Biedermann¹, R. McDermott², A. Kappatou², R. Wolf¹

1: Max-Planck Institut für Plasmaphysik, Greifswald, Germany 2: Max-Planck Institut für Plasmaphysik, Garching, Germany

- CXRS Principle
- Neutral injection at W7X
- Diagnostic Overview
- Expected Capabilites

W7X CXRS on NBI. Impurity Transport Meeting

CXRS Principle

Charge Exchange Recombination Spectroscopy (CXRS) physics:

CXRS

QSK / P122

O. Ford

W7X CXRS on NBI. Impurity Transport Meeting

CXRS Principle

Charge Exchange Recombination Spectroscopy (CXRS) physics: 1) Neutral beam particles donate electrons to impurity/plasma ions.

QSK / P122

O. Ford

W7X CXRS on NBI. Impurity Transport Meeting

CXRS Principle

QSK / P122 O. Ford

Charge Exchange Recombination Spectroscopy (CXRS) physics:

- 1) Neutral beam particles donate electrons to impurity/plasma ions.
- 2) Impurity ion left in excited state, emits photon.
- 3) Spectrum of collected photons give:
 - Impurity Densities (n_z)
 - Impurity Temperature \sim Ion temperature (T_i)
 - Impurity Bulk Velocity --> Radial Electric Field (E_r)

+ Toroidal Rotation (ω_{ϕ})

W7X CXRS on NBL Impurity Transport Meeting

CXRS Principle

+ Toroidal Rotation (ω_{0})

+Beam Emission Spectroscopy (BES):

Direction observation of beam neutral emission gives beam density n_b , beam deposition and spatial calibration of optics.

Charge Exchange Recombination Spectroscopy (CXRS) physics:

- Impurity Temperature \sim Ion temperature (T_i)

- Impurity Bulk Velocity --> Radial Electric Field (E_r)

2) Impurity ion left in excited state, emits photon.

3) Spectrum of collected photons give:

- Impurity Densities (n_z)

CXRS Principle

+ Toroidal Rotation (ω_{0})

+Beam Emission Spectroscopy (BES):

3) Spectrum of collected photons give:

- Impurity Densities (n_z)

Direction observation of beam neutral emission gives beam density n_b , beam deposition and spatial calibration of optics.

Charge Exchange Recombination Spectroscopy (CXRS) physics:

- Impurity Temperature \sim Ion temperature (T_i)

- Impurity Bulk Velocity --> Radial Electric Field (E_r)

2) Impurity ion left in excited state, emits photon.

Only diagnostic to give core measurements of: Core local impurity densities n_z (other than Argon) Toroidal rotation w_o Beam density/deposition n_b

Supplements XICS with localised measurements of: T_i: Localised measurements. E_r : Localised across most of profile.

W7X Beam Emission Impurity Transport Meeting

W7X Neutral Beams

Two neutral beam systems foreseen for W7X:

Heating Beams (NBI):

(Module 2) Max 10 seconds per box (7.5s for H, 10s for D) Very perturbative (>1MW) Diagnostic Beam (RuDIX): (Module 4) Can run effectively continuously (pulsed at low duty cycle) Low-current (less perturbative) Available from OP2 (at the earliest)

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122 O. Ford

CXRS on the NBI

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122

O. Ford

CXRS on the NBI

W7X CXRS on NBI. Impurity Transport Meeting

CXRS on the NBI

AEA21: High resolution, toroidally viewing system.

80 channels. OP1.2b+

QSK / P122

O. Ford

W7X CXRS on NBI. Impurity Transport Meeting

CXRS on the NBI

AEA21: High resolution, toroidally viewing system. AEM21: 45° to toroidal. Primarily for Er.

80 channels.	OP1.2b+
80 channels.	OP1.2a+

QSK / P122

O. Ford

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122

O. Ford

CXRS on the NBI

AEA21: High resolution, toroidally viewing system.	80 channels.	OP1.2b+
AEM21: 45° to toroidal. Primarily for Er.	80 channels.	OP1.2a+
AET20/21: Low resolution overview/cross-check45° to toroidal.	8 channels / box.	OP1.2a+

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122 O. Ford

Spatial Resolution

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122 O. Ford

OP1.2b+

Spatial Resolution

AEA21: High resolution, toroidally viewing system.

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122 O. Ford

Spatial Resolution

4

2

Ω

0.0

A21: Τ_i, n_z, n_b, v_φ

0.2

AEA21: High resolution, toroidally viewing system. AEM21: 45° to toroidal. Primarily for Er.

0.4

0.6

0.8

 ho_{eff}

1.0

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122 O. Ford

M21

Spatial Resolution

AEA21: High resolution, toroidally viewing system. 80 channels. OP1.2b+ AEM21: 45° to toroidal. Primarily for Er. 80 channels. OP1.2a+ AG220/21: Low resolution overview/cross-check. -45° to toroidal. 8 channels / box. OP1.2a+

QSK / P122 O. Ford

QSK / P122 O. Ford

W7X CXRS on NBI. Impurity Transport Meeting

Emission Lines

QSK / P122 O. Ford

297.6 O_VIII	524.9 NeX
298.2 B_V	529.06 C_VI
343.0 F_IX	541.152 Hell
343.3 C_VI	566.94 N VII
344.9 Ar_XVIII	- 570.2 S XIV
348.8 O_VIII	606.8 O VIII
388.7 N_VII	
434.1 O_VIII	– 656.01 Hell
436.5 Ar_XVI	656.28 HI
452.45 S_XIV	706.8 S XIV
468.58 Hell	771 7 C VI
479.3 Ar_XVII??	792 7 NL VII
494.46 B_V	752.7 IN_VII

Emission Lines

297.6 O_VIII		524.9 NeX	Fixed range. Always available.
298.2 B_V		529.06 C_VI	Fixed range. Always available.
343.0 F_IX		541.152 Hell	
343.3 C_VI		566.94 N VII	
344.9 Ar_XVIII		570.2 S XIV	
348.8 O_VIII		606.8 O VIII	
388.7 N_VII		608 5 N VII	
434.1 O_VIII		656 01 Hell	
436.5 Ar_XVI		656.28 HI	Eixed range Ream density / EIDA etc.
452.45 S_XIV		706.8 S XIV	Tixed fallge. Beath defisity + TIDA etc.
468.58 Hell	Fixed range. Always available.	700.0 <u>C</u> _XIV	
479.3 Ar XVII??	5 5	771.7 C_VI	
494.46 B_V		/92./ N_VII	

Emission Lines

297.6 O_VIII		524.9	9 NeX	Fixed range. Always available.
298.2 B_V		529.0	06 C_VI	Fixed range. Always available.
343.0 F_IX		541.1	152 Hell	
343.3 C_VI		566.9	94 N VII	Selectable. Very likely to work.
344.9 Ar_XVIII		570.2		
348.8 O_VIII		3,606		
388.7 N_VII		608 !	5 N VII	
434.1 O_VIII		656 (01 Hell	
436.5 Ar_XVI		656.2	28 HI	Fixed range Ream density L FIDA etc.
452.45 S_XIV		706 8	8.S. XIV	Tixed range. Beam density + TIDA etc.
468.58 Hell	Fixed range. Always available.	771 7	7 C VI	
479.3 Ar_XVII??		702 3	7 NI \/II	
494.46 B V	Selectable. Very likely to work	192.1	/ IN_VII	

Emission Lines

297.6 O_VIII		524.9 NeX	Fixed range. Always available.
298.2 B_V		529.06 C_VI	Fixed range. Always available.
343.0 F_IX		541.152 Hell	
343.3 C_VI		566.94 N_VII	Selectable. Very likely to work.
344.9 Ar_XVIII		570.2 S_XIV	
348.8 O_VIII		606.8 O_VIII	Selectable. Possible for high O content.
388.7 N_VII		608.5 N_VII	Measured at JET, but not enough signal at AUG.
434.1 O_VIII		656.01 Hell	
436.5 Ar_XVI		656.28 HI	Fixed range. Beam density + FIDA etc.
452.45 S_XIV		706.8 S_XIV	
468.58 Hell	Fixed range. Always available.	771.7 C VI	
479.3 Ar_XVII??			
494.46 B V	Selectable. Very likely to work.		

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122 O. Ford

Emission Lines

297.6 O_VIII	Not with the main system, but we could try something if these were really desirable.	524.9 NeX	Fixed range. Always available.	
298.2 B_V		529.06 C_VI	Fixed range. Always available.	
343.0 F_IX		541.152 Hell		
343.3 C_VI		566.94 N_VII	Selectable. Very likely to work.	
344.9 Ar_XVIII		570.2 S_XIV		
348.8 O_VIII		606.8 O_VIII	Selectable. Possible for high O content.	
388.7 N_VII _		608.5 N_VII	Measured at JET, but not enough signal at AUG.	
434.1 O_VIII		656.01 Hell		
436.5 Ar_XVI	Will look for this. Might see something.	656.28 HI	Fixed range. Beam density + FIDA etc.	
452.45 S_XIV		706.8 S_XIV		
468.58 Hell	Fixed range. Always available.	771.7 C_VI		
479.3 Ar_XVII??		792.7 N_VII		
494.46 B V	Selectable. Very likely to work.	—		

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122 O. Ford

Expected Performance

W7X CXRS based on the very succesful CXRS on ASDEX Upgrade:

- o Same NBI
- Same spectrometers (steal one and use their design for two more)
- **o** Same fibres.
- \mathbf{o} Same Ion temperatures (T_i).
- ~Same plasma cross-section (50-60cm core-edge).

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122 O. Ford

Expected Performance

W7X CXRS based on the very succesful CXRS on ASDEX Upgrade:

- o Same NBI
- Same spectrometers (steal one and use their design for two more)
- **o** Same fibres.
- **o** Same Ion temperatures (T_i) .
- ~Same plasma cross-section (50-60cm core-edge).

Up to 4x higher electron density (n_e) so:

- Lower signal in core (NBI attenuation)
- Much higher background (Bremsstrahlung)
- Higher impurity density (for the same concentration)

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122 O. Ford

Expected Performance

W7X CXRS based on the very succesful CXRS on ASDEX Upgrade:

- o Same NBI
- Same spectrometers (steal one and use their design for two more)
- o Same fibres.
- **o** Same Ion temperatures (T_i) .
- ~Same plasma cross-section (50-60cm core-edge).

Up to 4x higher electron density (n_e) so:

- Lower signal in core (NBI attenuation)
- Much higher background (Bremsstrahlung)
- Higher impurity density (for the same concentration)
- Much lower velocities (E_r) and higher sensitivity/accuracy required (> 5x better).
- + Slower typical dynamics (time resolution 100ms instead of 10ms is still useful).
- + Expect higher carbon content (AUG has W wall), but other impurities will be similar.

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122 O. Ford

Expected Performance

W7X CXRS based on the very succesful CXRS on ASDEX Upgrade:

- o Same NBI
- Same spectrometers (steal one and use their design for two more)
- o Same fibres.
- **o** Same Ion temperatures (T_i) .
- ~Same plasma cross-section (50-60cm core-edge).

Up to 4x higher electron density (n_e) so:

- Lower signal in core (NBI attenuation)
- Much higher background (Bremsstrahlung)
- Higher impurity density (for the same concentration)
- Much lower velocities (E_r) and higher sensitivity/accuracy required (> 5x better).
- + Slower typical dynamics (time resolution 100ms instead of 10ms is still useful).
- + Expect higher carbon content (AUG has W wall), but other impurities will be similar.

Performance at AUG

At ASDEX Upgrade, they routinely measure He II, B V, C VI, N VII and produce n_z profiles whenever the concentration is above ~0.2% n_e .

Some examples:

1) From the fixed Helium and Carbon channels of the high-entendué spectrometer at $\Delta t = 40$ ms:

Performance at AUG

At ASDEX Upgrade, they routinely measure He II, B V, C VI, N VII and produce n_z profiles whenever the concentration is above ~0.2% n_e .

Some examples:

1) From the fixed Helium and Carbon channels of the high-entendué spectrometer at $\Delta t = 40$ ms:

Performance at AUG

At ASDEX Upgrade, they routinely measure He II, B V, C VI, N VII and produce n_z profiles whenever the concentration is above ~0.2% n_e .

Some examples:

1) From the fixed Helium and Carbon channels of the high-entendué spectrometer at $\Delta t = 40$ ms:

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122 O. Ford

Performance at AUG

Some examples:

2) From the variable wavelength ASDEX Upgrade spectrometers at $\Delta t = 5$ -9ms:

Boron: "After a boronization we have about 1% B in the machine, which drops to about 0.5% in about a day and then stays at 0.5% for at last a week."

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122

O. Ford

Performance at AUG

Some examples:

2) From the variable wavelength ASDEX Upgrade spectrometers at $\Delta t = 5$ -9ms:

Boron: "After a boronization we have about 1% B in the machine, which drops to about 0.5% in about a day and then stays at 0.5% for at last a week."

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122 O. Ford

Performance at AUG

Some examples:

2) From the variable wavelength ASDEX Upgrade spectrometers at $\Delta t = 5$ -9ms:

3.5

3.0

2.5 2.0 1.5

1.0 0.5

0.0∟ 1 N Puff

2

3

4

5

Maynum

time / s

6

Impurity Density n_Z / $10^{17}\,m^{-3}$

W7X CXRS on NBI. Impurity Transport Meeting QSK / P122

O. Ford

Performance at AUG

The systems all also provide regular T_i and v_{ϕ} measurements:

Temperature measurements are generally very reliable and match between each species.

It's not clear how useful the v_{ϕ}/v_{θ} measurements will be at W7X given the much smaller values in Stellarators. The AUG systems can typically resolve $\delta v = \pm 10$ km/s in the core and ± 1 km/s at the edge for $\Delta t = 3$ ms - 10ms. Much longer time integration at W7X might help here.

Summary

CXRS systems at W7X should provide:

- n_z: Impurity density profiles of Carbon, Boron, Nitrogen. Helium with some work.
 - At least profile shapes and time evolution. Absolute values too, but this will be harder to get right.
 - We will try to look at Argon and Oxygen, but do not know if these will work.

T_i: Routine provision of Ti profiles should not be difficult for the main species.

 n_b : Beam density / attenuation for all beams.

 E_r : Maybe, at least to ± 10 kV/m but hopefully better.

 Δr_{eff} < 3cm but hopefully down to ~1cm in core.

 $\Delta t \sim 10$ - 100ms. Faster might be possible but will depend on signal level and electron density.

Summary

CXRS systems at W7X should provide:

- n_z: Impurity density profiles of Carbon, Boron, Nitrogen. Helium with some work.
 - At least profile shapes and time evolution. Absolute values too, but this will be harder to get right.
 - We will try to look at Argon and Oxygen, but do not know if these will work.

T_i: Routine provision of Ti profiles should not be difficult for the main species.

 n_b : Beam density / attenuation for all beams.

 E_r : Maybe, at least to ± 10 kV/m but hopefully better.

 Δr_{eff} < 3cm but hopefully down to ~1cm in core.

 $\Delta t \sim 10$ - 100ms. Faster might be possible but will depend on signal level and electron density.

- Only with NBI! We will try beam modulation / small blips but this will still have an effect on the plasma.

Summary

CXRS systems at W7X should provide:

- n_z: Impurity density profiles of Carbon, Boron, Nitrogen. Helium with some work.
 - At least profile shapes and time evolution. Absolute values too, but this will be harder to get right.
 - We will try to look at Argon and Oxygen, but do not know if these will work.

T_i: Routine provision of Ti profiles should not be difficult for the main species.

 n_b : Beam density / attenuation for all beams.

 E_r : Maybe, at least to ± 10 kV/m but hopefully better.

 Δr_{eff} < 3cm but hopefully down to ~1cm in core.

 $\Delta t \sim 10$ - 100ms. Faster might be possible but will depend on signal level and electron density.

- Only with NBI! We will try beam modulation / small blips but this will still have an effect on the plasma.

The design is still in progress and I still need input on what to optimise for with regard to impurity densities. Please tell me what is needed/desired...

- What is most important Good time resolution, spatial resolution or small uncertainties?
- Is profile shape useful without absolute density values?
- How useful would it be to look at Argon XVI and XVIII?