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Neutral beam atoms injected into plasma.
Excited by plasma, then emit Hα/Dα radiation.

Very Brief Introduction

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-3 -2 -1 0 1

S

SE Tangential Beams

E
Neutral 
Beam 
Injection

Toroidal Magnetic
Field



Max-Planck Institut
für Plasmaphysik

Neutral beam atoms injected into plasma.
Excited by plasma, then emit Hα/Dα radiation.

Very Brief Introduction

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-3 -2 -1 0 1

S

SE Tangential Beams

Camera View E
Neutral 
Beam 
Injection

Toroidal Magnetic
Field



Max-Planck Institut
für Plasmaphysik

Neutral beam atoms injected into plasma.
Excited by plasma, then emit Hα/Dα radiation.

Very Brief Introduction

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-3 -2 -1 0 1

S

SE Tangential Beams

Camera View E
Neutral 
Beam 
Injection

Toroidal Magnetic
Field

Neutal atoms charged and
    lost into bulk plasma.



Max-Planck Institut
für Plasmaphysik

Neutral beam atoms injected into plasma.
Excited by plasma, then emit Hα/Dα radiation.

Very Brief Introduction

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-3 -2 -1 0 1

S

SE Tangential Beams

Camera View E
Neutral 
Beam 
Injection

Toroidal Magnetic
Field

Spectrum from a single pixel:

0

5

10

653.0 653.5 654.0 654.5 655.0 655.5 656.0

C
o
u

n
ts

 /
 1

0
1

0
 p

h
o
to

n
s 

n
m

-1
 p

ix
e
l-1

 s
-1

U
n
sh

ifte
d
 D

αDoppler shifted by beam velocity 
toward/away from observer.

Neutal atoms charged and
    lost into bulk plasma.



Max-Planck Institut
für Plasmaphysik

Neutral beam atoms injected into plasma.
Excited by plasma, then emit Hα/Dα radiation.

Very Brief Introduction

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-3 -2 -1 0 1

S

SE Tangential Beams

Camera View E
Neutral 
Beam 
Injection

Toroidal Magnetic
Field

Spectrum from a single pixel:

0

5

10

653.0 653.5 654.0 654.5 655.0 655.5 656.0

C
o
u

n
ts

 /
 1

0
1

0
 p

h
o
to

n
s 

n
m

-1
 p

ix
e
l-1

 s
-1

U
n
sh

ifte
d
 D

ασ

π
π

Doppler shifted by beam velocity 
toward/away from observer.

Stark split by electric field in rest frame of atom: 
   E = v x B

Neutal atoms charged and
    lost into bulk plasma.



Max-Planck Institut
für Plasmaphysik

Neutral beam atoms injected into plasma.
Excited by plasma, then emit Hα/Dα radiation.

Very Brief Introduction

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-3 -2 -1 0 1

S

SE Tangential Beams

Camera View E
Neutral 
Beam 
Injection

Toroidal Magnetic
Field

Spectrum from a single pixel:

0

5

10

653.0 653.5 654.0 654.5 655.0 655.5 656.0

C
o
u

n
ts

 /
 1

0
1

0
 p

h
o
to

n
s 

n
m

-1
 p

ix
e
l-1

 s
-1

U
n
sh

ifte
d
 D

ασ

π
π

E

Doppler shifted by beam velocity 
toward/away from observer.

Stark split by electric field in rest frame of atom: 
   E = v x B

Roughly:  π polarised parallel to E. 
               σ polarised perp' to E.

Neutal atoms charged and
    lost into bulk plasma.



Max-Planck Institut
für Plasmaphysik

Neutral beam atoms injected into plasma.
Excited by plasma, then emit Hα/Dα radiation.

Very Brief Introduction

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

-3 -2 -1 0 1

S

SE Tangential Beams

Camera View E
Neutral 
Beam 
Injection

Toroidal Magnetic
Field

Spectrum from a single pixel:

0

5

10

653.0 653.5 654.0 654.5 655.0 655.5 656.0

C
o
u

n
ts

 /
 1

0
1

0
 p

h
o
to

n
s 

n
m

-1
 p

ix
e
l-1

 s
-1

U
n
sh

ifte
d
 D

ασ

π
σπ

E
E/2

E/3

π

ππ

σ

Doppler shifted by beam velocity 
toward/away from observer.

Stark split by electric field in rest frame of atom: 
   E = v x B

Roughly:  π polarised parallel to E. 
               σ polarised perp' to E.

Complications:
  Atoms with different injection energy: different Doppler shift.
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toward/away from observer.

Stark split by electric field in rest frame of atom: 
   E = v x B

Roughly:  π polarised parallel to E. 
               σ polarised perp' to E.

Complications:
  Atoms with different injection energy: different Doppler shift.
  Doppler broadening: Beam divergence, line integration etc. 
  Background Dα (not shown).
  

Neutal atoms charged and
    lost into bulk plasma.
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Introduction: Spectro-Polarimetric Imaging
We want a full 2D image of polarisation of Dα emission from beam.
Needs to also be sensitive to spectrum and polarisation.

Savart plates: Split light into 2 components and time delay one 
depending on incident angle (i.e. position in image/object  plane).

Savart 
Plate x

Polariser

Lens

Savart Plate y

Fixed delay
plate

θ

CCD

τ2
τ1(y)

τ3(x)

The interference of all 4 components gives:

(For the record: This is the 'Ampltiude Modulated Double Spatial Hetrodyne' system).

By demodulating the image in x and y, we can find θ, I0 and ζ.

Intensity Fringe Contrast Polarisation Angle
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Simple Demodulation
The image will look something like this:

FT

Select and demodulate

Polarisation Angle Image θ 
(Noiseless)

Polarisation Angle Image θ
(2.5% Image Noise)

Actually, this is wrong. The image is really the integral of this over the LOS.
However - it seems that if we assume it is, the recovered θ is the same as the LOS average for each pixel. 
The other terms are not equal to their LOS averages and introduce extra phases.
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Demodulation: Accuracy of θ recovery.
Recovery of θ from a noiseless and noisy images gives us our probably accuracy:
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Demodulation: Accuracy of θ recovery.
Recovery of θ from a noiseless and noisy images gives us our probably accuracy:
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Spatial Resolution
The recovered θ are really <θ> over the LOS. Spatial resolution is a combination of
pixel-pixel averaging due to modulation (1cm) and the LOS averaging. 
The LOS averaging varies over image (x,y):
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Towards edges, the observation angle averages
over ~5cm. With enough data (which we have)
this might be reduced by deconvolution 
(which is inherent in the Bayesian analysis)
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To final objective is to measure plasma current j. 
For normal 1D measurements: not possible so θ used as a constraint for equilibrium.
Does having 2D measurements make it possible to calculate j without equilibrium?

Assuming toroidal symmetry, the current is:

Assume we know Bϕ as the vacuum field, then we can calulate Bz from θ.

However, we only see where the MSE emission is, so can only integrate from some R = R0:

Recovery of plasma current.

This we have 
with 1D MSE. Function of Z that 

we cannot know.

The new term gives 
localisation of current 
in Z (~via curvature of field).

A normal MSE system has only Bz(R) so cannot calculate the 3rd term. 
In theory, with 2D measurements, we can.
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- Take CLISTE current distribution
- Predict 30x30 grid of Bz.
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- Try to directly calculate jϕ

For this exercise, fix unknown j(Z) term to match 
true values at grid left/right edge.
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entirely lost in the noise. Anyway, the f(Z) term is still not known.
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AUG PF coils and pickups model now in Minerva, so we can do Current 
Tomorgraphy and Bayesian Equilibrium for AUG. Try simple tomography from:
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Each case has 900 measurements at sigma = 10mT.
So difference is only in the type of information.

2) Normal MSE system: 
30 x Bz at 30 
positions along 
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By current tomography II
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All sigmaBr = sigmaBz =10mT

The IMSE still has a large uncertainty in jϕ offset. The unknown term 
it is not entirely pinned down by the magnetics.
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The 2D IMSE inference is much better than the equivalent MSE system.



Max-Planck Institut
für Plasmaphysik

By current tomography II

-3

-2

-1

0

1

2

1.2 1.4 1.6 1.8 2.0

R / m

j 
/ 

M
A

2) Normal MSE
(line)

-3

-2

-1

0

1

2

1.2 1.4 1.6 1.8 2.0

R / m

j 
/ 

M
A

3) IMSE Bz 
(grid)

-3

-2

-1

0

1

2

1.2 1.4 1.6 1.8 2.0

R / m

j 
/ 

M
A 4) IMSE Br and Bz

(grid)

Better :)

All sigmaBr = sigmaBz =10mT

The IMSE still has a large uncertainty in jϕ offset. The unknown term 
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The 2D IMSE inference is much better than the equivalent MSE system.

Result with Br is much better: If we could get Br as well, we could infer 
the current almost exactly.
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The IMSE still has a large uncertainty in jϕ offset. The unknown term 
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Result with Br is much better: If we could get Br as well, we could infer 
the current almost exactly.

Off axis and near the core, the 
AUG IMSE system will see 
Br with reasonable strength:

Relative stength of Br: MSE Intensity weighted LOS integral Br/Bz
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Br is always swamped by Bphi. 
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The IMSE still has a large uncertainty in jϕ offset. The unknown term 
it is not entirely pinned down by the magnetics.

The 2D IMSE inference is much better than the equivalent MSE system.

Result with Br is much better: If we could get Br as well, we could infer 
the current almost exactly.

Off axis and near the core, the 
AUG IMSE system will see 
Br with reasonable strength:

Unfortunately, information about 
Br is always swamped by Bphi. 

Even here, the LOS average polarisation angle, in terms of the field is:

Relative stength of Br: MSE Intensity weighted LOS integral Br/Bz

 = Camera 'up'

 = Camera 'right'

At 5 - 10%, it will have an effect, but we do not expect to see the full current 
recovery from 2D tomography.
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Full Inference
From this week, I can now do the full inversion from polarisation angle to plasma current θ(x,y) --> jϕ(R, Z), 
(without equilibrium) thanks to some new non-parametric (Gaussian process) priors (J. Svensson) 
and getting access to an unloaded linux cluster (on wednesday).
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This requires calculating 3960x1496 magnetostatic responses Bp(jϕ), 
1496x2400 image responses θ(jϕ) and a 14962 inversion.
(hence the linux cluster).
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(without equilibrium) thanks to some new non-parametric (Gaussian process) priors (J. Svensson) 
and getting access to an unloaded linux cluster (on wednesday).
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Initial results indicate that it is possible to recover the jϕ(R, Z) to at least 
a good resolution for studying the bulk plasma (e.g. testing different 
equilibrium models etc). This is MUCH better than is currently possible.
Resolution is processing limited - Higher resolution may be possible, 
but computation cost rises with resolution as ~n4.

This requires calculating 3960x1496 magnetostatic responses Bp(jϕ), 
1496x2400 image responses θ(jϕ) and a 14962 inversion.
(hence the linux cluster).
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Other progress (Hardware)
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Ideally, we want to fix the camera and optic plates
directly to the viewing optics (no fibre etc).

Camera will be subject to magnetic field, which 
Minerva can predict from the PF coils.
For the highest plasma current (Ip = 1.2MA),
|B| < 50mT:
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Ideally, we want to fix the camera and optic plates
directly to the viewing optics (no fibre etc).

Camera will be subject to magnetic field, which 
Minerva can predict from the PF coils.
For the highest plasma current (Ip = 1.2MA),
|B| < 50mT:

- The camera we have (12bit 1376x1040 Imager QE) was used next to the coils in Pilot (PSI) last year, so may survive this. 
Apart from a very slow frame rate (10Hz), it is otherwise perfectly suited, so could be used for a first attempt.
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Ideally, we want to fix the camera and optic plates
directly to the viewing optics (no fibre etc).

Camera will be subject to magnetic field, which 
Minerva can predict from the PF coils.
For the highest plasma current (Ip = 1.2MA),
|B| < 50mT:

- The camera we have (12bit 1376x1040 Imager QE) was used next to the coils in Pilot (PSI) last year, so may survive this. 
Apart from a very slow frame rate (10Hz), it is otherwise perfectly suited, so could be used for a first attempt.

- Faraday rotation due the field in the Savart plates will not be a problem, but the main delay plate might be.
(I'm assuming Lithium Niobate, but I can't find a Verdet constant for it in the Literature. Any suggestions?)
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Various other effects have been corrected in the forward model:
  - Detail of Stark splitting and component polarisations. (Thanks to R. Reimer for pointing this out)

or ??



Max-Planck Institut
für Plasmaphysik

Other progress (Model)

Various other effects have been corrected in the forward model:
  - Detail of Stark splitting and component polarisations. (Thanks to R. Reimer for pointing this out)
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  - Effect of non-statistical excitation distribution on Stark component intensities (from O.Marchuk 2009 J.Phys B.)

  - Non-uniform filter pass-band.

  - Asymmetries in Stark components.

Some of these significantly effect the image phases, but the polarisation angle (from the amplitude) remains unaffected.
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Other progress (Model)

Various other effects have been corrected in the forward model:
  - Detail of Stark splitting and component polarisations. (Thanks to R. Reimer for pointing this out)

  - Effect of non-statistical excitation distribution on Stark component intensities (from O.Marchuk 2009 J.Phys B.)

  - Non-uniform filter pass-band.

  - Asymmetries in Stark components.

Some of these significantly effect the image phases, but the polarisation angle (from the amplitude) remains unaffected.

Things still to add:
  - Background D-Alpha and FIDA.  (These will only reduce S/N).
  - CCD noise (other than photon statistics).
  - Viewing optics.

or ??
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