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Write nodes and wire them together.

Software framework handles the rest.
Even automatically generates the graphical representation.

We can re-wire the graph and redefine/modify the problem
at will, even during a run.,

Parts previously written:
Magnetics (field/flux calculations and JET magnetics)

Interferometry.

Parts I've written as part of my PhD:

Polarimetry
Core LIDAR

Edge LIDAR

Equilibrium (Grad-Shafranov Test)

Various Ne/Te profile models.
+(Parallelised and developed outer algorithms)

Other parts written during the past 3 years:

JET MSE
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MAST Magnetics
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... and a few others ...
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Thomson Scattering diagnostics with single spectrometer.
Time of flight for positioning.

Hardware system very complex.

Spatial Resolution:

Effective convolution of light signal.
If ignored: Convolves ne but complex effect on 7.
No problem for forward modelling: we just convolve the signal.

Calibrations:

Beam dump position + timing --> Uncertain position.
Optical transmission + laser energy --> ne magnitude.
Spectrometer Relative Sensitivities --> T magnitude.

Relative Channel timing --> T, + n, shape!

=
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Electron Density ne

Electron Temperature Te
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o = N w & v )] ~ [¢¢] ©o
Te/ keV
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Core LIDAR + Edge LIDAR + Interferometry
A typical high density H-mode pulse:
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Core LIDAR + Edge LIDAR + Interferometry

A typical high density H-mode pulse: 0 N
- Connect up the model.

- Give all calibrations some uncertainty (what we believe).
- Give some less trusted calibrations almost complete freedom (uniform prior).
- Throw the complete problem at the distributed GA for MAP (best fit) and
then at the distributed MCMC for the PDF (uncertaint...
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A High Resolution Thomson Scattering (HRTS) - Built after this project started.

-+ Edge LIDAR Standard Analysis

©C r N W P U O 9 o ©

Te !/ keV

edge region

Ne /109 m-3

Imperial College
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Same model,
SO same code.




ian Analysis Results from JET. Imperial College

Core LIDAR + Edge LIDAR + Interferometry

A typical high density H-mode pulse: 0 N
- Connect up the model.

- Give all calibrations some uncertainty (what we believe).
- Give some less trusted calibrations almost complete freedom (uniform prior). ‘ =

- Throw the complete problem at the distributed GA for MAP (best fit) and =7
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A typical high density H-mode pulse: 0 N
- Connect up the model.

- Give all calibrations some uncertainty (what we believe).
- Give some less trusted calibrations almost complete freedom (uniform prior).
- Throw the complete problem at the distributed GA for MAP (best fit) and
then at the distributed MCMC for the PDF (uncertaint...
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A High Resolution Thomson Scattering (HRTS) - Built after this project started.

-+ Edge LIDAR Standard Analysis

Clear that result is much more
accurate than using fixed calibration
values.

edge region

Despite completely free Te calibration,
the combination can fix Te and gives a
PDF for the calibration values.

Ne /109 m-3
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Core LIDAR + Edge LIDAR + Interferometry

A typical high density H-mode pulse: 0 N
- Connect up the model.

- Give all calibrations some uncertainty (what we believe).
- Give some less trusted calibrations almost complete freedom (uniform prior). " =

- Throw the complete problem at the distributed GA for MAP (best fit) and =
then at the distributed MCMC for the PDF (uncertaint...
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A High Resolution Thomson Scattering (HRTS) - Built after this project started. | Same mOdeL
— SO same code.
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-+ Edge LIDAR Standard Analysis

Clear that result is much more
accurate than using fixed calibration
values.

edge region

Despite completely free Te calibration,
the combination can fix Te and gives a
PDF for the calibration values.

Te !/ keV

Ne /109 m-3

But, this isn't complete - we are still using
§ flux surfaces fixed to the equilibrium code.
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Core LIDAR + Edge LIDAR + Interferometry + Magnetics

Connect magnetics model and run inversion.
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Core LIDAR + Edge LIDAR + Interferometry + Magnetics

Connect magnetics model and run inversion.
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Core LIDAR + Edge LIDAR + Interferometry + Magnetics

Connect magnetics model and run inversion.
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Core LIDAR + Edge LIDAR + Interferometry + Magnetics

Connect magnetics model and run inversion.
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Core LIDAR + Edge LIDAR + Interferometry: Pedestal Evolution Study

Looked in detail at evolution of ne/Te pedestals through the ELM cycle. 28 time points over 6 almost
identicle pulses.
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Core LIDAR + Edge LIDAR + Interferometry: Pedestal Evolution Study

Looked in detail at evolution of ne/Te pedestals through the ELM cycle. 28 time points over 6 almost
identicle pulses.
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Core LIDAR + Edge LIDAR + Interferometry: Pedestal Evolution Study

Looked in detail at evolution of ne/Te pedestals through the ELM cycle. 28 time points over 6 almost
identicle pulses.
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Inference of plasma current and flux surfaces P(y, | ... ) is the big problem.

With enough extra diagnostics, it might be possible to infer plasma current
accurately, entirely from data.
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Equilbrium |
Inference of plasma current and flux surfaces P(y, | ... ) is the big problem.

With enough extra diagnostics, it might be possible to infer plasma current
accurately, entirely from data.

For now, we can add the prior assumption of Equilibrium.
(Isotropic and no flow) L0
Jy = Rp' + Eff/

NB: It's not immediately clear how restrictive force
balance (GS equation) actually is, since it is almost
always used with strong prior constraints on p'

(or p - the equilibirum pressure) and ff' (or f - the
poloidal current flux). With weak contraints on p'

and ff', the space of possible solutions is still very large.
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Inference of plasma current and flux surfaces P(y, | ... ) is the big problem.

With enough extra diagnostics, it might be possible to infer plasma current
accurately, entirely from data.

For now, we can add the prior assumption of Equilibrium.
(Isotropic and no flow) 1
/ 0 /
Jo = Rp" + Eff

NB: It's not immediately clear how restrictive force
balance (GS equation) actually is, since it is almost
always used with strong prior constraints on p'

(or p - the equilibirum pressure) and ff' (or f - the
poloidal current flux). With weak contraints on p'

and ff', the space of possible solutions is still very large.

Assume GS equality is almost correct: assign a PDF on difference:

P(/, p', ff') = G(J-Rp'-ff'/R; O, oGS) with small o..
The posterior P(J, p', ff' | Dgjags + ~Equilibrium) will include all possible combinations of J, p' and ff
that are consistent with the diagnostics, the priors and describe a plasma very close to equilbrium.
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Inference of plasma current and flux surfaces P(y, | ... ) is the big problem.

With enough extra diagnostics, it might be possible to infer plasma current
accurately, entirely from data.

For now, we can add the prior assumption of Equilibrium.
(Isotropic and no flow) L0
Jy = Rp' + Eff/

NB: It's not immediately clear how restrictive force
balance (GS equation) actually is, since it is almost
always used with strong prior constraints on p'

(or p - the equilibirum pressure) and ff' (or f - the
poloidal current flux). With weak contraints on p'
and ff', the space of possible solutions is still very large.

Assume GS equality is almost correct: assign a PDF on difference:
P(J, p', ff') = G(J-Rp' - ff/R; 0, o,c) with small o..

The posterior P(J, p', ff' | Daiags + ~Equilibrium) will include all possible combinations of J, p' and ff'
that are consistent with the diagnostics, the priors and describe a plasma very close to equilbrium.

Adding to model (and the code) is fairly trivial,
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Equilbrium |
Inference of plasma current and flux surfaces P(y, | ... ) is the big problem.

With enough extra diagnostics, it might be possible to infer plasma current
accurately, entirely from data.

Plasma Beam Currents

For now, we can add the prior assumption of Equilibrium.
(Isotropic and no flow) L0
Jy = Rp' + Eff/

NB: It's not immediately clear how restrictive force
balance (GS equation) actually is, since it is almost
always used with strong prior constraints on p'

(or p - the equilibirum pressure) and ff' (or f - the
poloidal current flux). With weak contraints on p'
and ff', the space of possible solutions is still very large.

p ()
ff'(y,)

Assume GS equality is almost correct: assign a PDF on difference:
P(J, p', ff') = G(J-Rp' - ff/R; 0, o,c) with small o..

The posterior P(J, p', ff' | Daiags + ~Equilibrium) will include all possible combinations of J, p' and ff'
that are consistent with the diagnostics, the priors and describe a plasma very close to equilbrium.

Adding to model (and the code) is fairly trivial, but, the problem is now very hard for the external
algorithms to handle due to non-linear 1000D+ posterior.

1) Parallelise the linear solver and iterate to find MAP
(slower but more stable than EFIT).

2) Exploring the PDF only just possible for simpler current profile shapes.
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For simpler L-mode plasmas, we can explore the PDF,

D 80

40

20

-20




alysis Results from JET. Imperial College

London
78601 High ne
H-Mode (pellets)




alysis Results from JET. Imperial College

London

- - - - 1 78601 High
Equilbrium Il: Posterior Exploratiand MAP estimates. H-Mode (pellets)
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Rmag /m Rmag /m

2.0 2.5 3.0 3.5

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode:
J¢: Current beams with higher resolution near edge T
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2.0 2.5 3.0 3.5

Rmag /

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode:
J¢: Current beams with higher resolution near edge TN
p'(wy), ff'(wy): 20 knots, weak smoothing priors. HH

Too non-linear with too high-dimensionality (4732D) for current MCMC algorithms.
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Rmag /M Rmag /M

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode:

J¢: Current beams with higher resolution near edge gt
p'(wy), ff'(wy): 20 knots, weak smoothing priors.

Too non-linear with too high-dimensionality (4732D) for current MCMC algorithms.
Study MAP with different priors:
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For H-Mode:

J¢: Current beams with higher resolution near edge gt
p'(wy), ff'(wy): 20 knots, weak smoothing priors.

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.

Too non-linear with too high-dimensionality (4732D) for current MCMC algorithms.

Study MAP with different priors:
o
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Choose a good prior (e.g. Monotonic pressure), or use stronger parameterisation (e.g. Gaussian at edge):

Inferred
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Equilbrium 1lI: Pedestal current evolution H-Mode (pellets)

Choose a good prior (e.g. Monotonic pressure), or use stronger parameterisation (e.g. Gaussian at edge):
Easy to simulate data and invert to

(Simulation)

AIIE 0.01 —| @ Target/ Original
see what can be recovered: s
G Fmmmmmmmmmmm————- e 5-0.0157
= Target g 1

; : ; : ; : ; ; ; ; : ; : ;
-0.40 -0.35 -0.30 0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05
Pedestal [ <j,> dy, / MA m2
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Choose a good prior (e.g. Monotonic pressure), or use stronger parameterisation (e.g. Gaussian at edge):
Easy to simulate data and invert to
see what can be recovered:
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