

OP1.2 NBI analysis status and physics results

Eurofusion fast-ions workshop 2021

O. P. Ford¹, S. Lazerson¹, S. Äkäslompolo², M.Beurskens¹, S. Bozhenkov¹, D. Hartmann¹, Z. Huang¹, A. Langenberg¹, P. McNeely¹, N. Pablant³, P. Z. Poloskei¹, N. Rust¹, A. Spanier¹, L. Vanó¹, R. Wolf¹

- 1: Max-Planck Institut für Plasmaphysik, Greifswald, Germany
- 2: Aalto University, Espoo, Finland
- 3: Princeton Plasma Physics Laboratory, Princeton, US

Outline:

- 1) Status report
- 2) Observational results from OP1.2

We want: **Heating power** = Power passed to thermal electron/ion population in the plasma.

We want: **Heating power** = Power passed to thermal electron/ion population in the plasma. We can measure:

Calorimeter --> Neutralised power for non-plasma shots

We want: **Heating power** = Power passed to thermal electron/ion population in the plasma. We can measure:

Calorimeter --> Neutralised power for non-plasma shots

Beam emission spectroscopy --> Profile of power remaining in the beam.

O. Ford

A. Spanier - Analysis of calorimetry in NBI box, subtracting shinethrough from calorimetry of beam dump.

	201	20180823/037		20181009/016*			
	Flat dens	t density (ECRH)		Peak density (Pure NBI)			
E ₀ / keV	4	48.0		54.6			
Neutral fractions	0.32/0	0.32/0.61/0.07		0.3/0.5/0.2			
	Calorimetry	Beam emission	Calorim	etry	Beam e	mission	
P _{torus} / MW	2.7	2.6	3.1		2	.8	
P _{dump} / MW	0.29	0.26	0.21		0.34 ¹	0.16 ²	
P _{NBI} / MW	2.41 ± 0.24	2.34 ± 0.23	2.89 ± 0).29	2.55 :	± 0.26	

[A. Spanier, "Performance of the first neutral beam injector at the Wendelstein 7-X stellarator", https://doi.org/10.1016/j.fusengdes.2020.112115]

4 / 21 [12]

Scrape-off layer lost power

[14]

O. Ford

One remaining question: How much power is lost in the SOL?

[Poloskei]: Assuming min/max n_e and T_e = 100eV across 5cm of island --> 2 - 12% of beam power lost in the SOL.

[S. Äkäslompolo, "Validating the ASCOT modelling of NBI fast ions in Wendelstein 7-X stellarator", https://doi.org/10.1088/1748-0221/14/10/C10012]

Fast-ion Workshop 2021 OP1.2 NBI results

Particle deposition

For particle transport in NBI discharges, we need the particle source profile. Electrons (dn_e/dt) come roughly from:

~50% Beam ionisation

~50% Halo ionisation

Halo CX --> Particle deposition

[S. Lazerson]:

Analysis of pure NBI peaked density shots.

Beam attenuation from BEAMS3D MC beam model (decay length validated against BES measurements).

Approximation: Assume no halo transport.

[S. Lazerson, "Validation of the BEAMS3D neutral beam deposition model on Wendelstein 7-X", https://doi.org/10.1088/1741-4326/ab8e61] [S. Lazerson, "Modeling and measurement of energetic particle slowing down on Wendelstein 7-X", *(in preparation)*] O. Ford

Fast-ion Workshop 2021 OP1.2 NBI results

Particle deposition

For particle transport in NBI discharges, we need the particle source profile. Electrons (dn_e/dt) come roughly from:

- ~50% Beam ionisation
- ~50% Halo ionisation

Halo CX --> Particle deposition

[S. Lazerson]:

Analysis of pure NBI peaked density shots.

Beam attenuation from BEAMS3D MC beam model (decay length validated against BES measurements).

Approximation: Assume no halo transport.

If there were no particle transport how would n_e grow? (*D*, *v*, *Er* --> Γ = 0, infinite confinement time)

2 - 10x faster than observed, so: Density peaking not simply due to beam fuelling, but a transport effect. (more on this later)

[S. Lazerson, "Validation of the BEAMS3D neutral beam deposition model on Wendelstein 7-X", https://doi.org/10.1088/1741-4326/ab8e61] [S. Lazerson, "Modeling and measurement of energetic particle slowing down on Wendelstein 7-X", *(in preparation)*]

Fast-ion Workshop 2021 OP1.2 NBI results

Particle deposition

For particle transport in NBI discharges, we need the particle source profile. Electrons (dn_e/dt) come roughly from:

- ~50% Beam ionisation
- ~50% Halo ionisation

[S. Lazerson]:

Analysis of pure NBI peaked density shots.

Beam attenuation from BEAMS3D MC beam model (decay length validated against BES measurements).

Approximation: Assume no halo transport.

If there were no particle transport how would n_e grow? (*D*, *v*, *Er* --> Γ = 0, infinite confinement time)

2 - 10x faster than observed, so: Density peaking not simply due to beam fuelling, but a transport effect. (more on this later)

Halo transport will broaden the deposition by up to $\Delta \rho \sim 0.2$. Some fraction will be lost at the edge and amplitude will reduce due to volume effect --> Halo transport must be accounted for source profiles.

[S. Lazerson, "Validation of the BEAMS3D neutral beam deposition model on Wendelstein 7-X", https://doi.org/10.1088/1741-4326/ab8e61] [S. Lazerson, "Modeling and measurement of energetic particle slowing down on Wendelstein 7-X", *(in preparation)*]

Fast-ion Workshop 2021 OP1.2 NBI results

Indicates anomalous heat transport is dominant for both ion and electron channels.

[S. Lazerson, "Modeling and measurement of energetic particle slowing down on Wendelstein 7-X", (in preparation)]

IPPMax- für P	Planck Institut lasmaphysik	Fast-ion Workshop 2021 OP1.2 NBI results	O. Ford
	Ne	eutral beam current drive	9 / 21 [26]
NBI current drive of - BEAMS3D [Laze - ASCOT [Rust]	alculations by erson]> Reasor	nable agreement	

[S. Lazerson, "Modeling and measurement of energetic particle slowing down on Wendelstein 7-X", *(in preparation)*] [N.Rust,]

Fast ion distribution

With unknown transport, validation of the heating profiles only possible through validation of the fast ions:

- Fast ion losses Infrared wall measurements and FILD measurements.
- Fast ion distribution CTS and FIDA measurements.

AEM21_S7:32 @5.70 m

FIDA results already collected during OP1.2 --> Last talk today by P. Poloskei.

10 / 21 ^[28]

11 / 21 ^[50]

1) Status report

2) Observational results from OP1.2

T_i profile 'clamping' in W7-X

O. Ford

12 / 21 ^[53]

- Core T_i stays within same range and with similar gradients regardless of P_{ei} / electron-ion coupling.
- Effective T_i limit ~ 1.6 keV
- Exceptions:
 - 1) High-Performance pellet discharges
 - 2) Low density post-boronisation shots.

T_i profile resilience: NBI

13 / 21 ^[54]

- NBI adds significant direct ion heating (> 50%) but still does not raise $T_{i.}$
- Consistent with the existence of a critical T_i gradient.
- Exceptions:
 - 1) 'Under powered' plasmas: No ECRH, so T_i below limit.
 - 2) Low-density cases ECRH step-down cases.
 - 3) NBI peaked density + ECRH

- Pure NBI discharges show core density peaking.
- Density rise is less than NBI fuelling rate and core peaking accelerates at a specific radius and time:
 - ho_{eff} < 0.5.
 - $t > t_{onset}$, which varies over 1 2s after NBI in different shots. No apparent correlation of t_{onset} with external events.

14/21

[60]

- Pure NBI discharges show core density peaking.
- Density rise is less than NBI fuelling rate and core peaking accelerates at a specific radius and time:
 - ho_{eff} < 0.5.
 - $t > t_{onset}$, which varies over 1 2s after NBI in different shots. No apparent correlation of t_{onset} with external events.

14/21

[60]

- Pure NBI discharges show core density peaking.
- Density rise is less than NBI fuelling rate and core peaking accelerates at a specific radius and time:
 - ho_{eff} < 0.5.
 - $t > t_{onset}$, which varies over 1 2s after NBI in different shots. No apparent correlation of t_{onset} with external events.

14/21

[60]

- Pure NBI discharges show core density peaking.
- Density rise is less than NBI fuelling rate and core peaking accelerates at a specific radius and time:
 - ho_{eff} < 0.5.
 - $t > t_{onset}$, which varies over 1 2s after NBI in different shots. No apparent correlation of t_{onset} with external events.

- Density peaking reduces and $T_{\rm i}\,drops.$

14 / 21 [60]

Pure NBI density peaking - impurities

[L. Vanó]: Region of dramatically different transport seen more strongly in impurity density profiles.

- Rapid impurity influx at t_{onset}.

- Normally large impurity diffusion seen in ECRH discharges is not present during pure NBI.

- Impurities at least partially flushed out at addition of ECRH.

15 / 21 [62]

- Pure NBI discharges show core density peaking.
- Density rise is less than NBI fuelling rate and core peaking accelerates at a specific radius and time:
 - ho_{eff} < 0.5.
 - $t > t_{onset}$, which varies over 1 2s after NBI in different shots. No apparent correlation of t_{onset} with external events.

- Density peaking reduces and T_i drops.

16 / 21 [66]

- Pure NBI discharges show core density peaking.
- Density rise is less than NBI fuelling rate and core peaking accelerates at a specific radius and time:
 - $ho_{eff} < 0.5$.
 - $t > t_{onset}$, which varies over 1 2s after NBI in different shots. No apparent correlation of t_{onset} with external events.

16/21

[66]

Fast-ion Workshop 2021 OP1.2 NBI results

Pure NBI density peaking - Ti gradients

- During phase of ECRH addition with $T_i > T_i$ limit, the 'unusual' T_i gradient *roughly* coincides with the spatial region of the high density gradient.
- Consistent with idea of ITG supression due to density gradient, but...

Fast-ion Workshop 2021 OP1.2 NBI results

Pure NBI density peaking - Ti gradients

During phase of ECRH addition with $T_i > T_i$ limit, the 'unusual' T_i gradient *roughly* coincides with the spatial region of the high density gradient.

- Consistent with idea of ITG supression due to density gradient, but...
- [Z. Huang]: No evidence of reduced fluctuation level in PCI, or rise again during O2 phase.

However: ~20kHz mode appears at O2 phase:

Fast-ion Workshop 2021 OP1.2 NBI results

Pure NBI density peaking - Ti gradients

- During phase of ECRH addition with $T_i > T_i$ limit, the 'unusual' T_i gradient *roughly* coincides with the spatial region of the high density gradient.
- Consistent with idea of ITG supression due to density gradient, but...
- [Z. Huang]: No evidence of reduced fluctuation level in PCI, or rise again during O2 phase.

However: ~20kHz mode appears at O2 phase:

- Can we balance P_{ECRH}/P_{NBI} to make use of turbulence supression without losing the gradient that creates it, and simultaneously control impurities?

--> S. Lazerson - "Neutral Beam Operational and Scientific Planning for OP2"

OP1.2 NBI Results / Status report

18 / 21 [70]

Status report:

- Injected power Done Will be made routine
- Beam divergence and model Validated NBI codes must account for divergence!
- Particle source Done to first order Need to check halo transport effect.
- Heat source Done to first order S.Lazerson to make database of shots available.
- Current drive ...
- Fast-ion distribution Some information from FIDA

Observation results from OP1.2:

- Ion heating in standard ECRH plasmas is not seen or small, due to T_i profile clamping.
- Pure NBI plasmas:
 - Strong density peaking in core region due to unknown transport effect.
 - Strong impurity 'accumulation' and explusion in the same region.
 - T_i gradients might indicate 'turbulence supression' in NBI+O2 discharge.

O.P. Ford

19 / 21 [F10]

- Can we maintain sufficient density peaking?
- Cases so far have all been transient, but there are some almost stationary/stable cases, with low power and very low density.

This looks like the NBI equivalent of the post-boronisation low-density high T_i shots.

BACKUP: Er during NBI peaking

21 / 21 [F20]

Case 1: NBI + O2

O.P. Ford

22 / 21 [F30]

- NBI creates peaked density profiles with steadily increasing density.
- T_i slightly above T_i^{limit} is breifly achieved.
- ECRH kills otherwise stable peaked density T_i drops back below limit.

