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 despite outward neoclassical thermo-diffusion:

Gas-fuelled ECRH discharges
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 - Flat impurity profiles despite neoclassical pinch:      
       High turbulent impurity diffusion shown by LBO injection experiments [B. Geiger et al 2019 Nucl. Fus. 59 046009]
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Density gradient turbulence suppression

- Several cases show density gradient turbulence supression:
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  - Low power long-duration discharges.
  - Boron power dropper reducing edge gradients [R. Lunsford, EPS2021] 
  - TESPEL Pellet / LBO impurity injection [D.Zhang, A von Stechow EPS2019]

  - Post-pellets [Bozhenkov, ...]

(PECRH=5MW)

Density gradient turbulence suppression

- Several cases show density gradient turbulence supression:

  - NBI core fuelling.
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Neutral Beam Injection: Confinement
- NBI startup not possible on W7-X. Most beam injection is supplmentary to moderate-high ECRH power.
- Operation above ECRH radiative density limit [Fuchert, ...]

- Degradation with ne relative to ISS04 stellarator scaling reduced.

Density 
limit
[Fuchert, ...]

- Ti typically at only slightly above the Ti clamping limit.
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NBI : ECRH ratio
- NBI mostly supplementary to moderate-high ECRH power.
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P-0.61

- Highest stationary Ti above clamping with NBI + 1MW ECRH.

NBI : ECRH ratio
- NBI mostly supplementary to moderate-high ECRH power.

- Scaling changes around PECRH ~ 1MW
- Highest τE plasmas at zero or low ECRH power.
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2: Density rise in ρ < 0.5 accelerates.

ECRH NBI

Mixed heating experiments
1: ECRH startup, switch to NBI only. Initial NBI phase shows moderate density peaking.
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ECRH NBI

Mixed heating experiments
1: ECRH startup, switch to NBI only. Initial NBI phase shows moderate density peaking.

      to order neoclassical level [L. Vanó et. al. EPS2019]
Strong impurity pinch consistent with turbulence supression 
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2: Density rise in ρ < 0.5 accelerates.

ECRH NBI

Mixed heating experiments
1: ECRH startup, switch to NBI only. Initial NBI phase shows moderate density peaking.

      to order neoclassical level [L. Vanó et. al. EPS2019]
Strong impurity pinch consistent with turbulence supression 

3: Add 1MW O2-mode ECRH raises temperature, slightly reduces density peaking and flattens impurity 
        profile in deposition region.

PECRH
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- NBI heat and particle source from 

Beams3D code [S. Lazerson, this conference]

Electron/ion particle transport
- Particle flux reduces to neoclassical level inside mid-radius at onset of peaking.
      --> indicates strong suppression of turbulent flux in plasma core.
- Anomalous particle flux increases again as density gradient builds.
- Both neoclassical and anomalous increase with addition of 
    ECRH, which stops density rise.

NBIECRH

Anomalous

Neoclassical

NBI source rate

Total flux
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Electron/ion particle transport
- The onset time of the reduced particle and impurity anomalous fluxes varies between shots.
- No external events, no changes observed at plasma edge.
- Onset appears to occurs when a/Lne reaches ~0.85 (tentative)

tonset

Density peaking in NBI-only discharges Carbon density

tonset
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Energy transport: Species separation
- Separation of ion and electron energy fluxes requires determination of power exchange term.
- At high collisionality (ne ~ 1020), this requires O(10eV) accruacy of (Te - Ti) profile, which has not yet been achieved.
- Best analysis so far for highest Ti gives range from:  A) large Qe with Qi~Qi

NC   to  B) Qi ~ Qe >> QNC.
- Qe >> Qi ~ QNC would be consistent with with post-pellets experiments.
- However, neoclassical electron energy fluxes not supported by measurements.
      --> Next campaign: Improvements in Ti profiles + heat wave measurements.
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Energy transport: Total fluxes
- High collisionality leads to large Pei with small O(~10eV) differences in Te, Ti profiles.
- Data shows Qe >> Qe

NC but could support Qi ~ Qi
NC. However, Qe~Qi >> QNC also possible within uncertainty.
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2.6MW NBI

Q=

Routes to high confinement

- Density gradient builds during pure NBI phase. Te,i gradients limited by 2.6MW input power.
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Q ~ nT5/2
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  gyroBohm like scaling
  Q ~ nT5/2 at most radii.
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- If density gradient can be
  maintained, additional NBI
  power may lead to high ne,
  high Ti plasmas.
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1.3MW NBI

a/Lne

2.6MW NBI

2.6MW NBI
+1MW ECRH

±0.08

Q=

Routes to high confinement

Doppler Reflectometer [D. Carralero et. al. this conference]

Phase contrast imaging [Z. Huang et. al. this conference]

     

- Turbulence supression supported by reduced 
  fluctuations in high a/Lne plasmas. 
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        - Density peaking reduced
        - Return to ITG dominated plasmas
          with clamped Ti.

Doppler Reflectometer [D. Carralero et. al. this conference]

Phase contrast imaging [Z. Huang et. al. this conference]

     

- Turbulence supression supported by reduced 
  fluctuations in high a/Lne plasmas. 
    

Open questions for 2022/3 campaign:
  - Increase NBI power. What happens to a/Lne?
  - Why does a/Lne decrease with ECRH?
  - Can sufficient a/Lne be maintained while
     flushing out impurities?
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Fuelling scaling
- No clear correlation of density rise with fuelling rate. Changes dramatically during shots (transport barrier).
- Not yet able to predict asymptotic density or scaling with 4 sources.
- Maybe possible with deeper
   particle transport analysis.

1 source 2 sources
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Initial comparison with LHD
- Experiments conducted on LHD for NBI vs ECRH power [Lazerson]

- Initial global assesment looks similar but reasons might be
    different. Different NBI (energy, penetration), density 
    profiles, Te/Ti etc... detailed power balance analysis needed.
- Intention/resources to analyse further?
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Summary and outlook
- Limited Ti and performance in standard ECRH heated gas fuelled plasmas understood as combination of: 
      limited electron-ion coupling, strong ITG turbulence exacerbated by Te / Ti ratio.

- Turbulence supression observed in many cases of density gradients:
       - Pellets - now well studied and understood, but might be difficult to achieve in steady-state.

       - Spontaneous peaking. Very stable but only in low power ECRH.

       - Edge ne reduction by boron powder injection.

       - NBI core fuelling and reduced particle flux.
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- NBI with low-ECRH plasmas show stable density gradients and favorable gyroBohm like scaling Q ~ nT5/2 
    providing possible steady state scenario with high Ti in W7-X plasmas.
- Strong ECRH reduces gradient and returns to normal performance.
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- Turbulence supression observed in many cases of density gradients:
       - Pellets - now well studied and understood, but might be difficult to achieve in steady-state.

       - Spontaneous peaking. Very stable but only in low power ECRH.

       - Edge ne reduction by boron powder injection.

       - NBI core fuelling and reduced particle flux.

- NBI with low-ECRH plasmas show stable density gradients and favorable gyroBohm like scaling Q ~ nT5/2 
    providing possible steady state scenario with high Ti in W7-X plasmas.
- Strong ECRH reduces gradient and returns to normal performance.

Strong ne gradients = turbulence supression = higher Ti.
    Why? ITG, ETG, TEM, iTEM .... --> E5
    How can we best use it? 
    Why do we get ne gradients? Why are ne profiles not hollow? Why does ne peak in NBI/pellets?
    Why does ECRH flatten ne? What role does edge fuelling/pumping play? 
    Why do low P and boron droper plasmas have low edge ne? How can this be used?
    Are all these low/high edge ne scenarios compatible with detachment?
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E3 Retreat 2021

- Primary measurements: (mostly as OP1.2b) 
   - Ti, Er, nC  ~50 channels on NI21
   - NBI blips in almost all discharges: 20ms blips at 5Hz for 15s
   - Er analysis development by PhD student from CIEMAT.
   - 2 variable spectrometers of 40 points on 2 impurities selected
         from B, C, N, O, Ar, Fe, ...
      (Select C for highest resolution --> 160 Ti, nC, Er points)

      (Gratings not upgraded due to lack of funds - 10k€)

   - FIDA measurements [Poloskei] 

CXRS OP2 status and upgrades 

      

Ti

nC

Er

nZ 

Blips Continuous NI21

< 2 minutes

ne available + 1 minute

On request

ne available + 1 minute

Poor quality in 2 minutes. 
Validated on request only.

Difficult, special request only

Upgrades:
  1) 18x high-speed Ti for Qi via heat-pulse-propagation [Univ. WISC: Geiger].
  2) 30x extra carbon (Ti, nC, Er) measurements [NIFS: Ida, Yoshnuma]
  3) Upgrade to passive spectrometer for CVI 
            --> Reliable Ti, nC, Er measurements in continuous NBI
            --> Inverted edge Ti, nC measurements without NBI
  4) Spectral MSE for ι profile measurements [E3: Zanini], (15k€ funds for camera uncertain).

  5) Passive Hα spectrometer for neutral hydrogen profiles [E5: Reimold], 
        (Currently no camera)

  6) Coherence imaging of Ti, nC [Univ. Seville: Viezzer; E4 Perseo]
  7) Passive FIDA spectrometer... to be considered, no camera (15k€)

OP2.1 SMSE Head

SMSE Prototype 2

220µm
fibres x 124

Existing 
fibre head

MSE Mount

3x polarising 
films

7mm
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