

Charge Exchange Recombination Spectroscopy at W7-X.

Physics Meeting 29.10.18

O. P. Ford¹, L.Vanó¹, T. Neelis³, C. Biedermann¹ S. Bozhenkov¹, R. McDermott², A. Kappatou², R. Wolf¹

1: Max-Planck Institut für Plasmaphysik, Greifswald, Germany 2: Max-Planck Institut für Plasmaphysik, Garching, Germany 3: TU/e, Eindhoven

-0.6

5.0

5.2

5.4

5.6

5.8

AEM21: 45° to toroidal. Primarily for Er. AET721: Low resolution overview/cross-check. -45° to toroidal. M2

07 **Q**8

A21

6.0 R/m

W7-X CXRS on NBI. W7-X Physics Meeting

Observation Systems

AEA21: High resolution, toroidally viewing system.
AEM21: 45° to toroidal. Primarily for Er.
▲ETF21: Low resolution overview/cross-check. -45° to toroidal.

W7-X CXRS on NBI. W7-X Physics Meeting

O. Ford

Observation Systems

AEA21: High resolution, toroidally viewing system. AEM21: 45° to toroidal. Primarily for Er. AET721: Low resolution overview/cross-check. -45° to toroidal.

Spectrometers

5 Spectrometers provide 300 measurements, each a mix from A, M and T ports:

AUG1 - Secondary impurities 1: 43 channels Mainly n_0 , n_B , n_C and more T_i , E_r .

Variable settings

AUG2 - Secondary impurities 2: 37 channels Injected impurities: B, N, Fe²³⁺, Fe²⁴⁺, Ar

NIFS He - 30 channels. (K.Ida and M.Yoshinuma) He/H ratio NIFS H - 30 channels. High resolution Halpha for He/H ratio. But also for BES --> n_b , FIDA, n_H , T_H ...

Avaspec: 1 channel.

⁷ Full visible spectrum for active CX line searching.

W7-X CXRS on NBI. W7-X Physics Meeting

Example discharge: NBI + O2

W7-X CXRS on NBI. W7-X Physics Meeting

Example discharge: NBI + O2

Base system 'ILS Green': A12 gives 3/4 full profile, typically at 7.5ms resolution:

CXRS T_i vs Thomson Scattering T_e

O. Ford

Match to Thomson scattering T_e is usually good for well coupled ($T_e \sim T_i$) plasmas. T_e/T_i profiles show signs of heating mix effects (but we need to check mapping!)

Mapping effects seen on both TS and CXRS HFS vs LFS for highest beta time point (beta=0 VMEC run used here)

Beam Attenuation

Base system 'ILS Red' measures the Hα spectrum - beam emission, Hydrogen CX and FIDA. Beam attenuation/deposition caluclations and model comparison in progress (T. Neelis) Very complex spectrum requires detailed modelling:

Beam density decay provides some information about electron density (at $\Delta t \sim 10$ ms)

$$I \propto n_e n_b \qquad \qquad n_b = n_{b(0)} e^{-k \int_0^x n_e(x') dx'}$$

With detailed modelling, the H α spectrum may allow calculation of the Hydrogen $_{8/1}$ temperature and density (--> n_e , Z_{eff})

W7-X CXRS on NBL W7-X Physics Meeting

1e20

- Pure NBI operation shows strong Carbon peaking inside the steep T_e gradient, after ~ 1sec. $_{97}$ Addition of O2 ECRH widens and lowers this with some delay.

Non-intrinsic impurities

AUG1/2: Variable wavelength spectrometers changed inbetween shots for different impurity lines.

Measurement of injected impurities for impurity transport physics:

- Nitrogren, Neon, Methane (C) from seeding.
- Boron, Iron (Fe²³⁺, Fe²⁴⁺) from Tespel/LBO.
- Boron from Boron pellet dropper.

 $_1$ Good Oxygen data were also regularly measured throughout OP1.2b.

W7-X CXRS on NBI. W7-X Physics Meeting

XICS cross-calibration

Argon (Ar¹⁵⁺) for cross-calibration with XICS. (Ar¹⁶⁺ + H --> Ar^{15+*} + p, n=14 - 13, 436.6nm)

- Investigate CXRS XICS T_i discrepancies Is it T_C vs T_{Ar16+} ? or diagnostic?
- Absolute Ar¹⁶⁺ intensity to support XICS calibration (if CX cross-sections are OK)

Argon¹⁶⁺ CXRS measurements more consistent with Carbon⁶⁺. XICS Ar^{16+} usually higher. Gradients always consistent --> Supports XICS inversions.

W7-X CXRS on NBI. W7-X Physics Meeting

Flow Measurements: Poloidal

Doppler shift of any component gives flow velocity along LOS: A21 = Toroidal flow. M21 = Toroidal flow + E_r

Decomposition of velocities into Toroidal bulk flow and E_r have begun.

Data strongly affected by passive background. OK for standard 20ms blips and for 100ms averging of stationary NBI.

First glance at raw data shows strengthening of -ve E_r with steepening of T_i gradients.

Flow Measurements: Toroidal

Doppler shift of any component gives flow velocity along LOS: A21 = Toroidal flow.

 $M21 = Toroidal flow + E_r$

Decomposition of velocities into Toroidal bulk flow and E_r have begun.

Small changes also visible in toroidal velocity data but not yet fully intrepreted.

- Cross-check wavelength calibration other spectrometers.

W7-X CXRS on NBI. W7-X Physics Meeting

O. Ford

For highest S/N at high spatial resolution, all spectrometers measure C_VI line.

Data from 4 sets of lines of sights, measured by 3 spectrometers at a single time point:

Map of fits for all time points:

Time / s

High resolution data

With only mild smoothing, good T_i gradients can be derived:

Together with the Thomson Scattering profiles, these will be used to examine the electron and ion transport e.g. in NBI vs ECRH cases and in high-Ti pellet shots.

Summary

- Very successful campaign for CXRS. Almost everything intended was attempted. Everything attempted was fairly successful.
- Lots of good data recorded.
- H/W support of other diagnostics: NBI Neutraliser spectroscopy, Alkali beam, Passive FIDA
- Analysis tools now being developed and analysis will take a long time, please be patient! Unvalidated basic Ti profiles of NBI blips can be processed quite quickly on request. See wiki for details and example python script.
- Analysis Projects:
 - NBI Heating/Fuelling characterisation Ford, Poloskei, Geiger, Rust.
 - Beam attenuation/modelling validation Neelis, Lazerson, Äkäslompolo
 - Low-Z impurity transport Vanó
 - FIDA Bozhenkov, Äkäslompolo, Geiger
 - CXRS/XICS comparison and combination Ford, Pablant, Langenberg
 - $T_i/T_e/n_e$ gradients, E_r and transport <code>Ford, Bozhenkov</code>
 - He/H ratio and transport Ida, Yoshinuma
 - Flow decomposition, Er and impurity assymetries Ford, Alonso
 - B, C, Fe injection data Vanó, Impurity group?
 - Seeded impurities (N, Ne) Reimold