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To investigate what information can be extracted from many existing fusion plasma diagnostics at JET, 
using the analysis techniques of forward modelling and the principals of Bayesian analysis.

1. To infer the plasma state at any instant, making as few as possible assumptions.

2. Achieve a complete and rigorous description of the uncertainty, from:
              diagnostic noise, calibration uncertainty and degeneracy of possible states.

3. To minimise uncertainty by consistently combining data from multiple diagnostics.

Research Plan:
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The problem (now a non-linear 1000D+ distribution) is difficult for the algorithms to handle.

- Parallelise the linear solver and iterate to find most probable answer.
- Parallelise MCMC algorithms and explore the posterior.
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RESULTS

Uncertainties in everything derived is also automatically or easily calculated...

Simple to add diagnostics (Polarimetry, Diamagnetic loop, MSE, LIDAR-TS etc) and 
to modify parametrisation, priors and equilibrium model.

All directly transferable to MAST as it is part of the common code base for Bayesian analysis on 
JET, MAST, ANU, W7-AS, and will work directly from the MAST magnetic model.

[ To be submitted as part of PhD thesis and for publication later this year ]
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Add the necessary parametrisation and equilibrium model to include flow and/or anisotropic pressure.



Plasma polarimetry usually treated using 'cold plasma' model based on fluid approximation.
Two papers gave corrections for finite-Te effects derived from kinetic theory: 
  a) S.E. Segre (2002): Argues non-relativistic kinetic approximation is sufficient: 
                    - Correction from cold model of 24% for ITER. 
  b) V.V. Mirnov (2007): Argues mass increase of electron is important and derives a weakly relativistic 
                    approximation. - Gives a correction of 9% for ITER.
 

- Detailed modelling of diagnostics allows extraction of a plasma physics results, from existing data, 
    and from far below the noise level.
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Plasma polarimetry usually treated using 'cold plasma' model based on fluid approximation.
Two papers gave corrections for finite-Te effects derived from kinetic theory: 
  a) S.E. Segre (2002): Argues non-relativistic kinetic approximation is sufficient: 
                    - Correction from cold model of 24% for ITER. 
  b) V.V. Mirnov (2007): Argues mass increase of electron is important and derives a weakly relativistic 
                    approximation. - Gives a correction of 9% for ITER.
 
Compare predictions from each model based on Bayesian inferred ne profiles from interferometry diagnostic.
But... Measurement and prediction for cold plasmas differ unexpectedly and systematically over entire 
pulses and campaigns due to calibration variation which is not fully understood.

- Detailed modelling of diagnostics allows extraction of a plasma physics results, from existing data, 
    and from far below the noise level.

Calibration uncertainty larger than model 
differences and systematic for pulse:  
Can easily find pulses that agree with any model.
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Diagnostic uncertainty is due to calibration and cannot depend on plasma core Te.
Polarimeter has been on JET for a long time so we have a lot of data...

Independently:
1) Adjust calibration parameters to 
make cold plasma model agree for 
cold plasmas

2) Compare data in high Te period: 

There were suggestions to run an experimental campaign at very high Te  to check these theories but the
information was already in the data.

The fit is heavily driven by this data 
( Te < 3keV). This is not a bad thing!

"Forward modeling of JET polarimetry diagnostic" - Rev. Sci. Instrum 79 10F324 (2008)

"Experimental verification of relativistic finite temperature polarimetry effects at JET" 
Plasma Phys. Control. Fusion 51 065004 (2009)     ( Included in IOP select and PPCF highlights 2009. )


