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Forward Modelling and Bayesian Inference

The basic idea:
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Separate/Modular code for each operation

Parameters
(Including prior distribution)

w Magnetic Field |—>| Flux

ne profile

T
G Te profile \ Te in 3D "E Thomson Scattering@ homson Data

\

Model (Simplified)
-,
Likelihood Distributions
(Compare prediction and data
with expected noise)

\

Interferometry Interferrometry Data

calibration
B

—32 Polarimetry Polarimetry Data

calibration

~

P( Model )

Bayes Theorem: P( Te, Ne, ] | Data ) ~

Linear Gaussian Solver Genetic Algorithms
(Best fit and PDF (Non-linear best fit)

covariance)

P(D | Ne, Te, J ) P( Te, Ne, J)

Practically: Solve and explore using external algorithms:

Metropolis Hastings
MCMC Non-linear Exploration:
--> Uncertainty
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Software and Models

Write nodes and wire them together.

Software framework handles the rest.

Even automatically generates the graphical representation.

We can re-wire the graph and redefine/modify the problem
at will, even during a run.

Parts previously written: JET Magnetics, Interferometry.

Parts | wrote as part of my PhD:
Polarimetry
Core + EDGE LIDAR Thomson Scattering
Equilibrium (Grad-Shafranov Test)

Parts written by others:
JET: MSE, Reflectometry, Infrared strikepoint camera
MAST: Magnetics, MSE, Thomson Scattering
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Core + Edge LIDAR: The systems and the problem

Thomson Scattering diagnostics with single spectrometer.
Time of flight for positioning.

Hardware system very complex.

Spatial Resolution:

Effective convolution of light signal.
If ignored: Convolves ne but complex effect on 7.
No problem for forward modelling: we just convolve the signal.

Calibrations:

Beam dump position + timing --> Uncertain position.
Optical transmission + laser energy --> ne magnitude.
Spectrometer Relative Sensitivities --> T magnitude.

Relative Channel timing --> T, + n. shape!
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Core + Edge LIDAR: The model

So how do we deal with disagreement with other diagnostics?
Shift and scale output profiles to match?
No - Build the model for each and wire up to Minerva;:

it what we do know about the calibration parameter
and let it work out how to make everything consist

We must really understand each part of the system:
Laser Pulse, TS physics, Optics, Filters,
Photomultipliers, Counting Noise (PDFs), ADCs.
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Core LIDAR + Edge LIDAR + Interferometry

A typical high density H-mode pulse: 0 N
- Connect up the model.

- Give all calibrations some uncertainty (what we believe).
- Give some less trusted calibrations almost complete freedom (uniform prior). " ;

- Throw the complete problem at the distributed GA for MAP (best fit) and =7
then at the distributed MCMC for the PDF (uncertaint...
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A High Resolution Thomson Scattering (HRTS) - Built after this project started. Y H Same mOde|,
— SO same code.
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Edge LIDAR Standard Analysis

Clear that result is much more
accurate than using fixed calibration
values.

edge region

Despite completely free Te calibration,
the combination can fix Te and gives a
PDF for the calibration values.

Te !/ keV

Ne /109 m-3

But, this isn't complete - we are still using
y flux surfaces fixed to the equilibrium code.
s+ Wt
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Instead, calculate y,, from toroidal currents J, include magnetics diagnostics and invert to full posterior:

i.e: Find combinations of J, Te, ne, that are consistent with all the diagnostics.
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Core LIDAR + Edge LIDAR + Interferometry + Magnetics

Connect magnetics model and run inversion.
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The TS diagnostics provide information on plasma current near

Plasma current one of the most important and least diagnosed — X
parameters in Tokamaks. 20 2.4 2.8 3.2 36 R/m




‘Results from JET. Imperial College

London
Core LIDAR + Edge LIDAR + Interferometry: Pedestal Evolution Study

Looked in detail at evolution of ne/Te pedestals through the ELM cycle. 28 time points over 6 almost
identicle pulses.

Appears to be two distinct phases for Te:
1) Rapid rise in height and gradient
during first 50ms.
2) Slow rise in height and width at fixed
E \ \% gradient until next ELM.
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Current and Flux Surfaces
Inference of plasma current and flux surfaces P(y, | ... ) is the big problem.

1) Current Tomography and 2) Add an MSE diagnostic:
external magnetics: Better

P(J | D): Possible current proﬁles given data
I T T )

‘ / l"ﬁ"\
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W\ \

Neautral
Beams

|Po|arimeter

3) Add a 2D MSE System:
Much better!

In the meantime....

Add the 'prior knowledge' that the plasma should
- be somewhere near, something like an equilibrium....

Ho
Js=Rp' + = ff
(We can also think of this as the observation that the
plasma hasn't exploded).

R /m
What can this and the external magnetics tell us?
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Equilbrium |

Isn't this just 'solving' the equilibrium?
1) The inference problem cannot be 'solved' - there are a very large range of good solutions that
match the magnetic diagnostics.

o Prefect solution
2101\ 4 to equation. NB: It is not clear how helpful force balance (GS equation)
£ 120- %, actually is. It is almost always used with strong prior
g g, The real plasma constraints on p (equilibirum pressure)
S e and f (poloidal current flux).
7 \‘L
0 T T T T ¥

0.0 0.0 0.0 0.0 0.0 0.0

2) The equation is approximate anyway: J¢ — Rp’ + %ff’ + Flow + Anisotropy + 3D + 7?77

- We are not interested in solving an equation. We want to know the configuration of the real plasma.
- We should trust the diagnostics more than the equation!

Add as prior constraint:

P(]¢ o Rp, T 'LL_ROff,) — G(Oa Uequi)

The posterior P(J, p', f' | Dgiags, Equilibrium) will
include all possible combinations of /, p' and ff' that
are consistent with the diagnostics, the priors and
describe a plasma very close to equilbrium.
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- - | - - - 78601 High
Equilbrium Il: Posterior Exploratiand MAP estimates. H-Mode (pellets)

For simpler L-mode plasmas, we can explore the PDF, and recover the theoretically predicted degeneracy.
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Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode:

J¢: Current beams with higher resolution near edge ‘ WT

[T

p'(wy), ff(w,): 20 knots, weak smoothing priors. It i

Too non-linear with too high-dimensionality (4732D) for current MCMC algorithms.
Study MAP with different priors:
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- - - 78601 High
Equilbrium 1lI: Pedestal current evolution H-Mode (pellets)

Choose a good prior (e.g. Monotonic pressure), or use stronger parameterisation (e.g. Gaussian at edge):

Easy to simulate data and invert to L | o torgets ot
see what can be recovered: £ | o marestimae
q‘-------'----'---/. ----- 7'_‘ 5'0'0157
. Target : 9* |
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Inferred 0.0357
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We CAN reconstruct information inside boundary. Pedestal [ cw /WA

Can recover some information about pedestal current both the parallel AND perpendicular (i.e pressure)
to the magnetic field.

Evolution over ELM cycle follows pressure from kinetic measurements incredibly well:
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Summary

® Develop modular forward models for physics calculations and diagnostics.
® Build up a full description of each problem by connecting modular models.

® Use Bayesian Probability theory to invert data to a distribution over free parameters.

® Forward modelling allows easy handling of many calibration parameters
and the complex uncertainties, they result in.

25

edge region

® Combining multiple diagnostics
helps infer those calibration
A parameters from the data:

timingAdjust_I

2.0

® Used to examine H-mode pedestal
; ne/Te evolution at very high spatial
resolution.

tpulseToBackwallTime 1 |

laserWidthAdjust 1 ——
—

® Use Bayesian 'posterior PDF' description to examine complex uncertainty
in Tokamak equillibria without other strong prior assumptions.
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® Surprising amount of detail recoverable from
magnetics alone (no internal measurement)
when these strong assumptions are not included.

Kinetic 2pe(ped) Magnetics p(ped)




