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The ECRH reintroduction scenario N

Wendelstein

1) During pure-NBI peaking, particle transport changes and density peaks strongly inside ~mid-radius.
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The ECRH reintroduction scenario

Wendelstein
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Add ECRH to take advantage of low x.s.
ECRH '‘pumps-out' density. Too much and we fall below required a/Ln --> back-transition to high .
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) During pure-NBI peaking, particle transport changes and density peaks strongly inside ~mid-radius.
) With peaked density profiles (roughly a/Ln > 1.0 ), heat diffusivity is 4 times lower.
)
)
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Wendelstein

The ECRH reintroduction scenario N

During pure-NBI peaking, particle transport changes and density peaks strongly inside ~mid-radius.
With peaked density profiles (roughly a/Ln > 1.0 ), heat diffusivity is 4 times lower.

1)

2)

3) Add ECRH to take advantage of low Y.s.

4) ECRH 'pumps-out' density. Too much and we fall below required a/Ln --> back-transition to high ¥.
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The ECRH reintroduction scenario

Wendelstein
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During pure-NBI peaking, particle transport changes and density peaks strongly inside ~mid-radius.

ECRH '‘pumps-out' density. Too much and we fall below required a/Ln --> back-transition to high .
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Configuration dependence

Wendelstein

- Density peaking of pure-NBI depends

Density rise from number of NBI sources

on NBI particle source rate.
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ECRH pump-out

Wendelstein

o~

- ECRH 'pump-out' effect increase with more
power. This doesn't seem to be linear.

- The effect is very configuration dependent.

This gives a maximum power we can put
into a given configuration for a given number
of NBI sources:
e.qg. for 2 sources:
High/low mirror: ~1.5MW
Standard: ~2.3MW
FMMO0O02: 3.5MW

So we chose FMMO0O02, obviously.
(FTM is probably similar)

Is some other configuration even better???
maybe!

dne/dt [102°m—3s571]

_10_

Density change due to ECRH (NBI rate subtracted)
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Wendelstein
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ECRH pump-out

Wendelstein
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Wendelstein

ECRH pump-out AR

Density change due to ECRH (NBI rate subtracted)
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ECRH absorption

Wendelstein

- ECRH is with O2 polarisation. Very difficult
to get good absorption.

- Lots of work by Torsten in OP2.2 to fix this:
1) Field scans to get deposition location right.

2) Improvement of sniffer interlock settings.
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ECRH absorption

Wendelstein

- ECRH is with O2 polarisation. Very difficult
to get good absorption.

- Lots of work by Torsten in OP2.2 to fix this:

1) Field scans to get deposition location right.

2) Improvement of sniffer interlock settings.

Sometimes we have falling T, and T;
despite constant density and radiation.
is this absorption related??
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FMMO002 internal islands

Wendelstein

- FMMO0O02 balance for 2x NBI = 3.5MW ECRH was quite good (T; ~ 2.3keV, W, ~ 1.2 M))
- FMMO0O2 is a limiter configuration with internal islands.

- T; is flattened in the islands - visible in 2D with CICERS diagnostic (only in reintroduction phase!).
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FMMO002 internal islands

Wendelstein

- Experiments to use control coils to change size of FMMO0O02 islands.
- With I.. = -2.5 kA, we could squish the islands, and get more effective volume.
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FMMO002 internal islands

Wendelstein

- Experiments to use control coils to change size of FMMO0O02 islands.
- With I.. = -2.5 kA, we could squish the islands, and get more effective volume.
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FMMO002 internal islands

Wendelstein

- Experiments to use control coils to change size of FMMO0O02 islands.

- With I.. = -2.5 kA, we could squish the islands, and get more effective volume.
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Data issues AR

Wendelstein
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1) Non-linearity problems of interferometer
are critical to us, as dn/dt may not be real.

- Previously published sudden drops of main ion particle
flux (as left) may not be real! but...
particle transport change is still definitely there.

- We can't do any detailed analysis without corrected
interfometry data.
- Several shots already done.
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Data issues

Wendelstein
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1) Non-linearity problems of interferometer
are critical to us, as dn/dt may not be real.

- Previously published sudden drops of main ion particle

flux (as left) may not be real! but...
particle transport change is still definitely there.

- We can't do any detailed analysis without corrected
interfometry data.
- Several shots already done.

2) Some part of story only in OP2.1 - Missing or poor quality TS.

--> Check with BES machine learning core n..
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Data issues

Wendelstein
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1) Non-linearity problems of interferometer
are critical to us, as dn/dt may not be real.

- Previously published sudden drops of main ion particle
flux (as left) may not be real! but...
particle transport change is still definitely there.

- We can't do any detailed analysis without corrected
interfometry data.
- Several shots already done.

2) Some part of story only in OP2.1 - Missing or poor quality TS.
--> Check with BES machine learning core n..

3) NBI power signal and dn/dt seem lower in OP2.2 than OP2.1,
but calorimetry says power is the same.
--> Need BES validation again.
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Particle fluxes

Wendelstein

T

- Particle balances of some shots already done [S. Bannmann]
- Neoclassical particle flux is a big part of ECRH pump-out in reintroduction phase.
However... not if configurations are different in neoclassical, anomalous or even source (edge density).

Particle flux and source [s-1]
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Wendelstein

Summary i

- Overview of the ECRH reintroduction scenario.
- High T; / W,;, achieved given density gradient in core.
- Each configuration has a specific ECRH/NBI balance to maintain the density gradient.

- Record shot had three main ingredients:
1) Balance ECRH pump-out. Use FMM0O02 has balance with maximum ECRH power.
2) Tune field strength for best ECRH absorption to avoid sniffer interlock.
3) Supress/shrink islands in FMMO0O2 to avoid T; flattening.

- Data analysis beginning. Spreadsheet of 43 reintroduction shots with main values.
- Lots of data to still be carefully checked:

- Interferometry corrections

- NBI power / particle deposition.

- Good TS profiles

- T; profiles from main CXRS and CICERS.

- E, profiles from CXRS and DR

- Particle balance

- Power balance

- Turbulence simulations
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