

S49: NBI+ECRH+Detachment in high-iota

Presented by Oliver Ford on behalf of the W7-X Team

0 0 0 0 0 0 0 0 0 0 0 0 0

TF-I Meeting. 17th February 2023

0

0

0

0

0 0

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

0 0 0

Proposals

Prio-I:

oliford_002 sul_035 sul_040	Threshold of P_ECRH into pure NBI for heat transport change Power steps of ECRH in NBI (LHD Comparison) Mimick NBI divertor loads with ECRH	NBI+ECRH physics
jove_006	Effect of density peaking on fast-ion confinement	Measurements at high-beta
cak_023, 24,	Detachment using feedback div. gas. H, Ne fueling on Prad, NGM, div. neutral. pressure. Detachment in NBI(+ECRH) discharges Detachment optimization with recycling neutrals	Detachment
Prio-2:		

cak_028, 30, glp_003 mkubk_003 roblu_002 (*oliford_006*) suk_041

Detachment feedback on IR, machine learning, on div. bolometer Impurity concentration in detachment (PHA) Boron injections in different configs Error field correction in high iota configuration

Proposals

Prio-I:

oliford_002 sul_035 sul_040	Threshold of P_ECRH into pure NBI for heat transport change Power steps of ECRH in NBI (LHD Comparison) Mimick NBI divertor loads with ECRH	NBI+ECRH physics
jove_006	Effect of density peaking on fast-ion confinement	Measurements at high-beta
cak_023, 24,	Detachment using feedback div. gas. H, Ne fueling on Prad, NGM, div. neutral. pressure. Detachment in NBI(+ECRH) discharges Detachment optimization with recycling neutrals	Detachment
Prio-2:		
<mark>cak_028, 30, glp_003</mark> mkubk_003 roblu_002 (<i>oliford_006)</i>	Detachment feedback on IR, machine learning, on div. bolometer Impurity concentration in detachment (PHA) Boron injections in different configs	

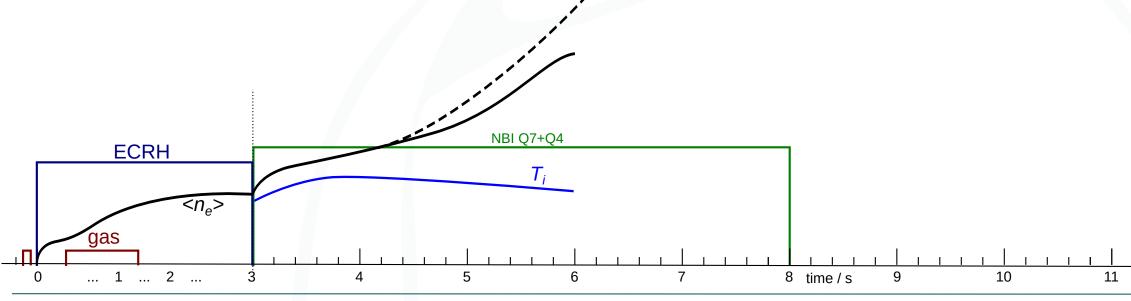
roblu_002 (oliford_006) suk_041

Additional:

vape_003, mbeur_012	Detachment in NBI
anla_021	Verification of residual ECCD for on-axis X2
boz_048	low-P, post B spontaneous density peaking in high-iota

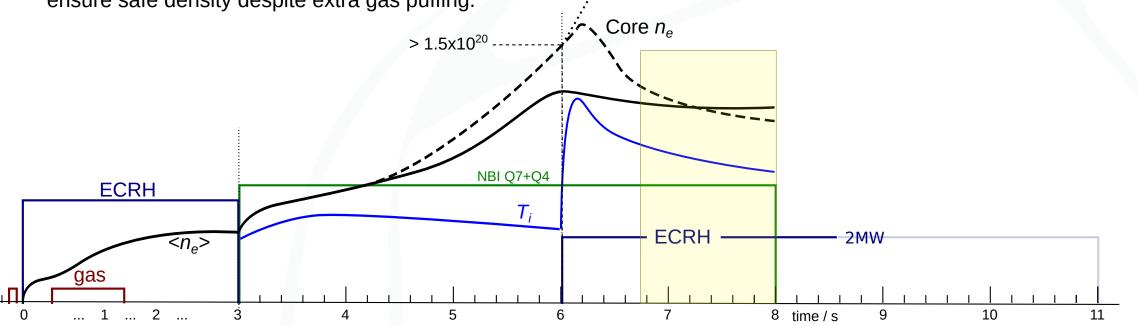
Error field correction in high iota configuration

Cover in passing TF request SO discretion

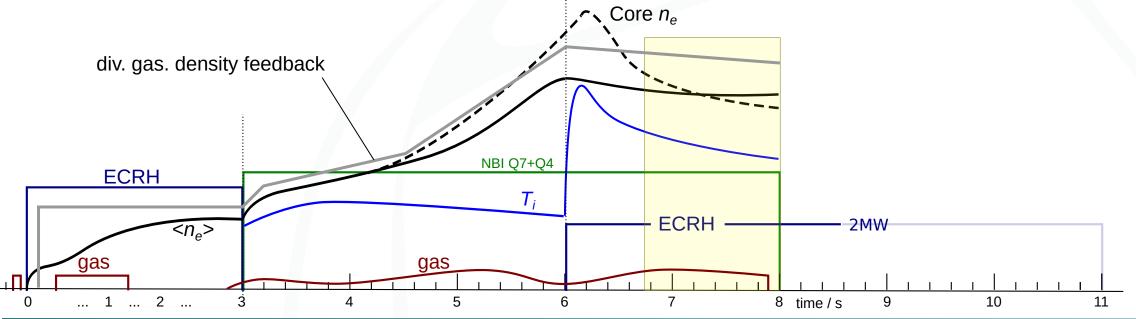


- 1) Pure NBI density peaking hit it with O2 ECRH.
- Peak high beta, settles to ~stationary state with improved Ti.
- Only short 1 1.5sec stable-ish period
 - --> not enough time todo detachment studies
- Possibility: try getting into detachment during discharge by density chasing the elevated set-point
- Extra power of O2 ECRH will make this harder
- Probably move ECRH to early after NBI start to ensure safe density despite extra gas puffing.

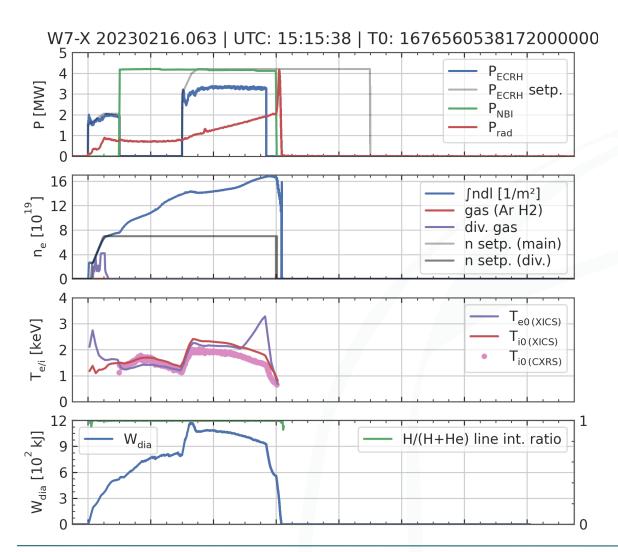
Core n_e

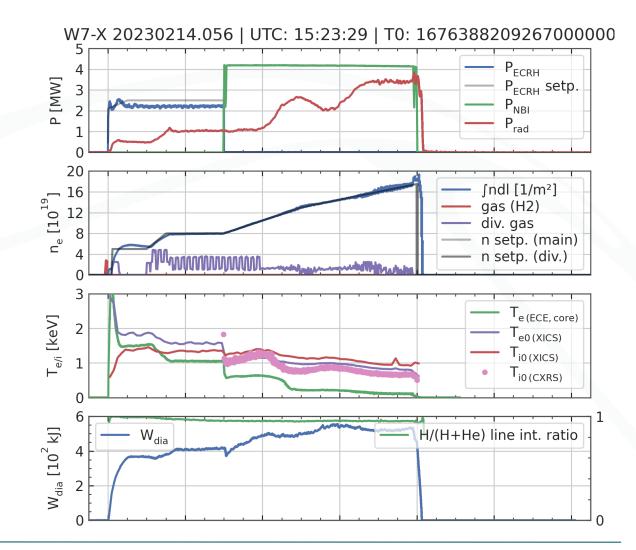

- 1) Pure NBI density peaking hit it with O2 ECRH.
- Peak high beta, settles to ~stationary state with improved Ti.
- Only short 1 1.5sec stable-ish period
 - --> not enough time todo detachment studies
- Possibility: try getting into detachment during discharge by density chasing the elevated set-point
- Extra power of O2 ECRH will make this harder
- Probably move ECRH to early after NBI start to ensure safe density despite extra gas puffing.

 $< 2.0 \times 10^{20}$

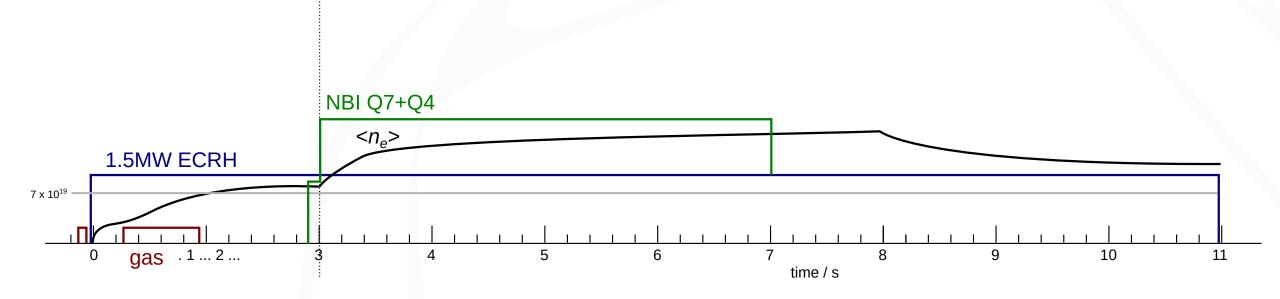


- 1) Pure NBI density peaking hit it with O2 ECRH.
- Peak high beta, settles to ~stationary state with improved Ti.
- Only short 1 1.5sec stable-ish period
 - --> not enough time todo detachment studies
- Possibility: try getting into detachment during discharge by density chasing the elevated set-point
- Extra power of O2 ECRH will make this harder
- Probably move ECRH to early after NBI start to ensure safe density despite extra gas puffing.




- 1) Pure NBI density peaking hit it with O2 ECRH.
- Peak high beta, settles to ~stationary state with improved Ti.
- Only short 1 1.5sec stable-ish period
 - --> not enough time todo detachment studies
- Possibility: try getting into detachment during discharge by density chasing the elevated set-point
- Extra power of O2 ECRH will make this harder
- Probably move ECRH to early after NBI start to ensure safe density despite extra gas puffing.

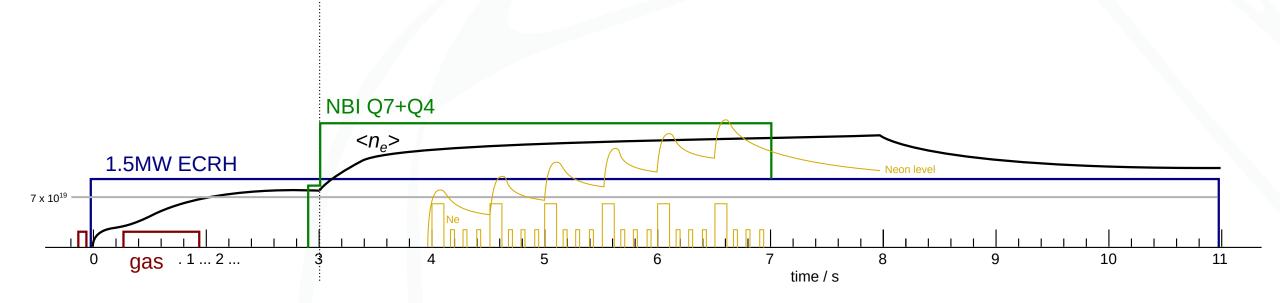
Combination of on-going development of NBI+O2 ECRH and pure NBI detachment (14.02.2023)


NBI+ECRH scenario 2 - Neon

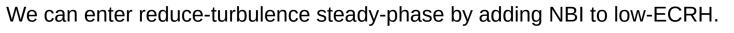
We can enter reduce-turbulence steady-phase by adding NBI to low-ECRH.

- Much simpler with longer steady phase.
- 1) Use this for detachment from neon-seeding at normal density.

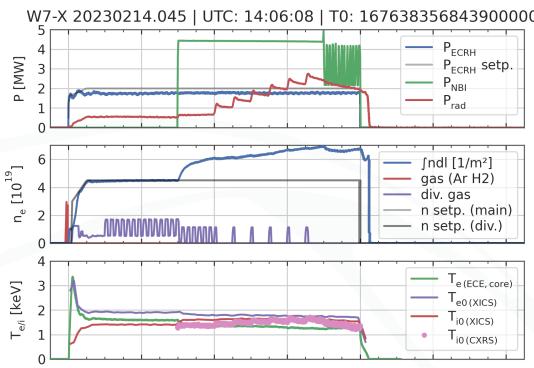
Is basically mbeur_012 from S38, but with high enough density and lower P_{ECRH} to definitely get density peaking and hopefully reduced turb.

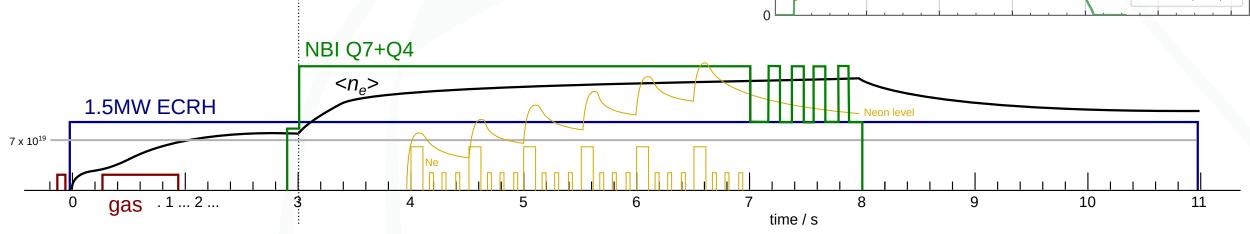

NBI+ECRH scenario 2 - Neon

We can enter reduce-turbulence steady-phase by adding NBI to low-ECRH.


- Much simpler with longer steady phase.
- 1) Use this for detachment from neon-seeding at normal density.

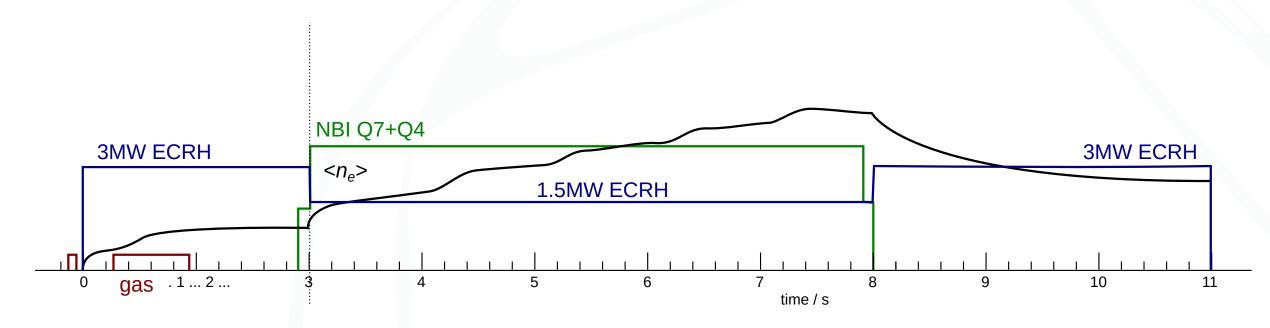
Is basically mbeur_012 from S38, but with high enough density and lower P_{ECRH} to definitely get density peaking and hopefully reduced turb.





NBI+ECRH scenario 2 - Neon

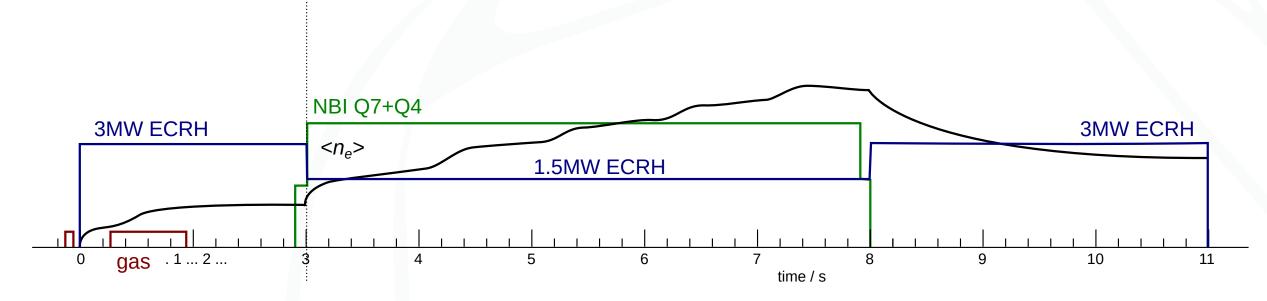
- Much simpler with longer steady phase.
- 1) Use this for detachment from neon-seeding at normal density.
- Is basically mbeur_012 from S38, but with high enough density and lower P_{ECRH} to definitely get density peaking and hopefully reduced turb.
- +Modulation of S7 (or 8) in place of S8 (or 7) for fast-ion measurements (for jove_006)



NBI+ECRH scenario 2 - Hydrogen

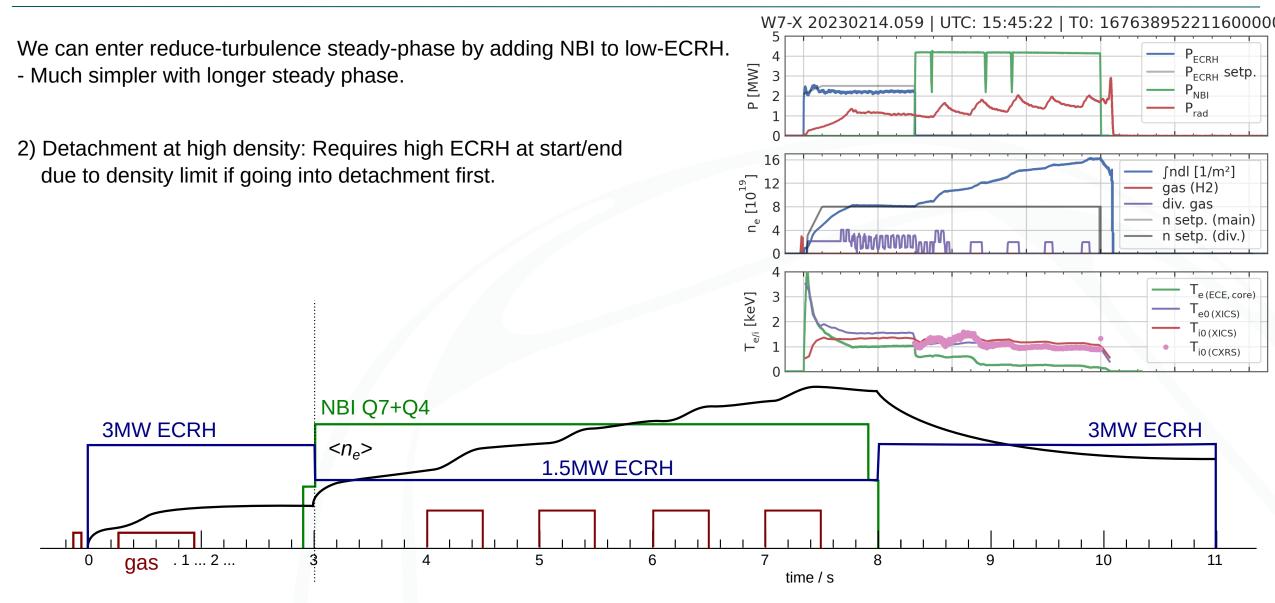
We can enter reduce-turbulence steady-phase by adding NBI to low-ECRH.

- Much simpler with longer steady phase.



NBI+ECRH scenario 2 - Hydrogen

Wendelstein 7-X


We can enter reduce-turbulence steady-phase by adding NBI to low-ECRH. - Much simpler with longer steady phase.

2) Detachment at high density: Requires high ECRH at start/end due to density limit if going into detachment first.

NBI+ECRH scenario 2 - Hydrogen

Shot list

ECRH program: Detachment, NBI strike-point matching

Safety Scenario dev.

lev. Diagnostic

щ	• Description	References	FORM	init ne	NBI	Diagnostic	Proposala
#	eDescription low P, post B spontaneous density peaking	#?	ECRH 1MW	mitne	NDI	purturbation No	Proposals boz_048
2	Verification of residual ECCD for on-axis X2	#20230119.20	TIMIAA			2	anla_021
3	Verification of residual ECCD for on-axis X2	#20230119.20				2	alla_021
4	NBI energy extension 0.5s	#20230113.21				Outside NBI?	
5	Mimick NBI divertor loads with ECRH (+trim coils scan?)					?	sul_040, (+sul_041?)
6	NBI energy extension 1.0s					Outside NBI?	Sul_040, (+Sul_041?)
7	Mimick NBI divertor loads with ECRH (+trim coils scan?)					?	sul_040, (+sul_041?)
8	NBI energy extension 5.0s, safety+comparison					No	Sul_040; (+Sul_041?)
9	Mimick NBI divertor loads with ECRH (+trim coils scan?)					?	sul_040, (+sul_041?)
10	NBI + reintroduce O2, best of S42 repeat, (no gas)		3 MW		8.5 Q7+Q4	No	oliford_002, jove_006, sul_035
10	Mimick NBI divertor loads with ECRH (+trim coils scan?)		5 10100		0.501104	NO	sul 040
		#20230214.056,					3ui_040
12	NBI + reintroduce O2, H fueling for detachment, (chasing setpoint)	#20230214.030, #20230216.63, S42	3 MW		8.5 Q7+Q4	No	cak_024, daz_014, +vape_003
13	Detachment preparation	120200210.00, 042	0.000		0.0 41.44	?	daz_015, cak_024, +vape_003
10	b ota of million proparation						daz_014, sul_035, oliford_002, cak_024,
14	Constant NBI+ECRH, Ne for detachment	#20231207.054	1-3MW		Q7+Q4	?	jove_006, +mbeur_012
15	Detachment preparation	1202012011004	1 0000		£1.544	?	daz_015, cak_024
10	bottermisite propertation						daz_014, sul_035, oliford_002, cak_024,
16	Constant NBI+ECRH, Ne for detachment	#20231207.054	1-3MW		Q7+Q4	?	jove_006, +mbeur_012
17	Detachment preparation	#20201201.004	TONIA		Q11Q4	?	daz_015, cak_024
11	betterment preparation						
18	Constant NBI+ECRH, H detachment	#20231207.054	1-3MW		8Q7+Q4	?	daz_014, sul_035, oliford_002, cak_024, jove_006, +mbeur_012
19	Boron injection	#20231207.034	1-21/10/		001+04	?	roblu 002
15	Boron injection					r	_
20	Constant NBI+ECRH, H detachment	#20231207.054	1-3MW		8 Q7+Q4	?	daz_014, sul_035, oliford_002, cak_024, jove_006, +mbeur_012
20	Boron injection	#20231207.034	1-21/10/		0Q1+Q4	?	roblu 002
22	Constant NBI+ECRH + Boron dropper (no detachment)	#20231207.054	3 MW		8 Q7+Q4	?	roblu_002, +oliford_006
22		#20231201.034	3 10100		001104	1	