

S42: NBI+ECRH in high-mirror - Session Report

Presented by Oliver Ford on behalf of the W7-X Team Wendelstein **EURO**fusion

Physics Meeting. 27th February 2023

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.

MAX-PLANCK-INSTITUT FÜR PLASMAPHYSIK | Oliver Ford | September 2022

0 0 0 0 0 0 0 0 0 0 0 0 0

Proposals

Prio-I:	
	-

mspolaor_002

tya_023

oliford_002 stato_022	Threshold of P_ECRH into pure NBI for heat transport change ECRH into pure NBI with no X2 absoption	Scenario-development
dacar_006 thir_002	Turbulence in suppressed turb. scenarios (DR, PCI, CECE, SXR) Threshold P_ECRH for impurity transport change	Measurement specifics
alkn_004 cbra_011 kbr_10	Beta effects on edge topology XMCTS Shafranov shift at different betas Alfvén Eigenmodes in high beta	Measurements at high-beta

Edge EM turbulence in high beta (MPM probe)

MHD stability in high performance

Proposals

P	ri	O	_	•
		v	_	

oliford_002 Threshold of P_ECRH into pure NBI for heat transport change stato 022 ECRH into pure NBI with no X2 absoption Scenario-development

dacar_006 Turbulence in suppressed turb. scenarios (DR, PCI, CECE, SXR)
thir 002 Threshold P ECRH for impurity transport change

alkn_004 Beta effects on edge topology

cbra_011 XMCTS Shafranov shift at different betas

kbr_10 Alfvén Eigenmodes in high beta

mspolaor 002 Edge EM turbulence in high beta (MPM probe)

tya 023 MHD stability in high performance

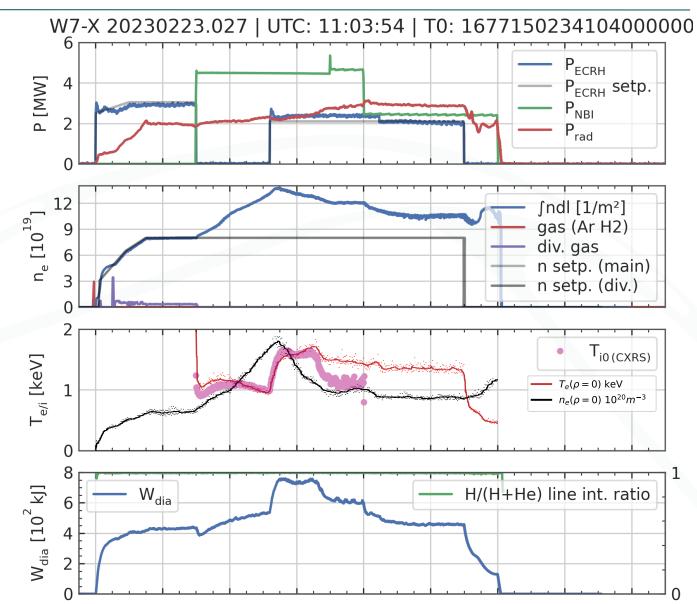
Prio-2:

astechow 011 Turbulence "matching" between pure ECRH and NBI Modification request

Additional:

cswee 001, twegner 007 Impurity transport in NBI+ECRH Cover in passing

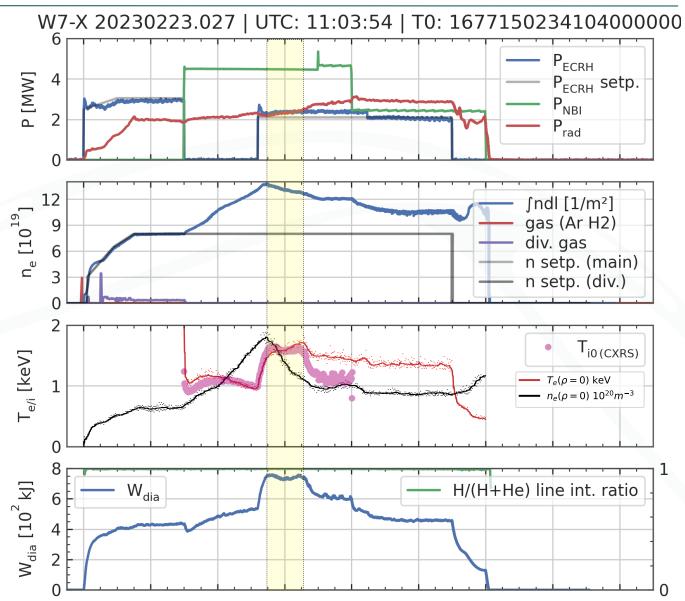
Measurements at high-beta



Prio-I:

oliford_002 stato_022

Mostly successful (in KKM)



Prio-I:

oliford_002 stato_022 Mostly successful (in KKM)

~500ms stable reduced turb. transport (higher T_i gradient, impurity accumulation) at \leq 2MW O2 ECRH.

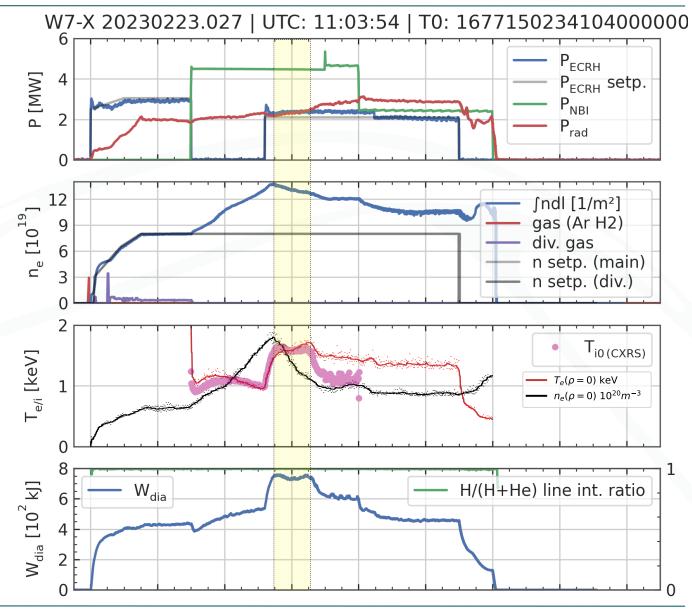
Prio-I:

0.0

0.1

0.2

oliford_002 stato_022 Mostly successful (in KKM)


~500ms stable reduced turb. transport (higher T_i gradient, impurity accumulation) at \leq 2MW O2 ECRH.

Profiles #20230223.027 5.500 < t < 6.500
7.000 < t < 8.000

2.5

1.5

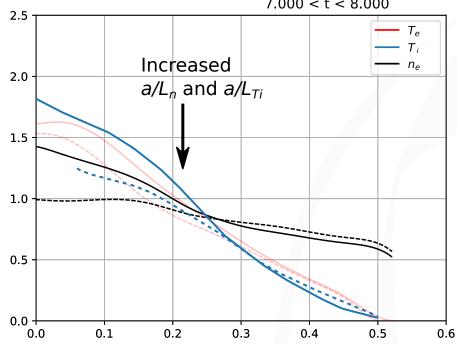
1.0

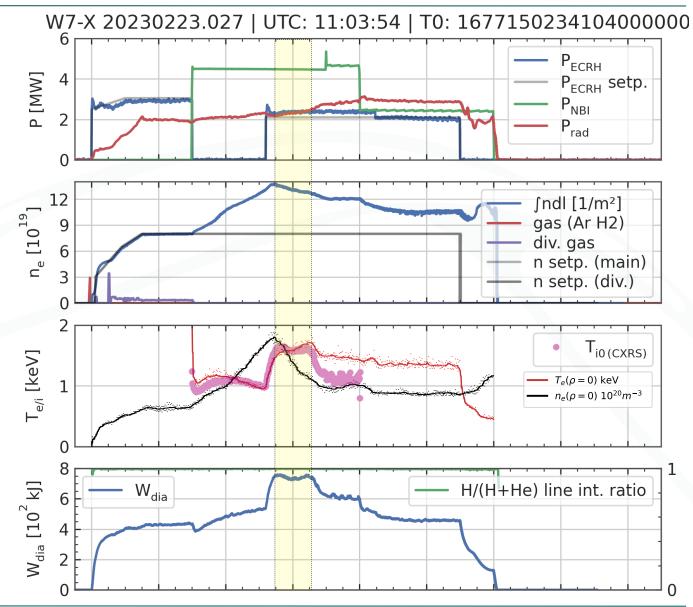
0.4

0.5

0.6

0.3



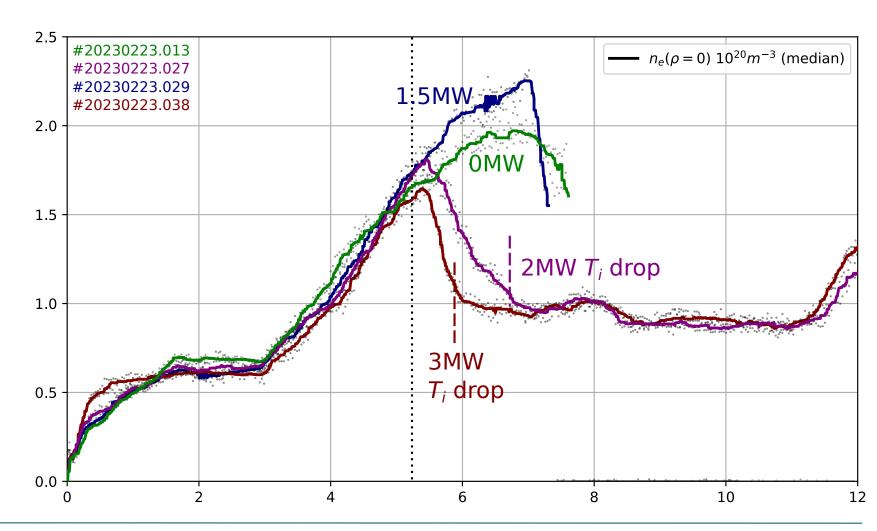

Prio-I:

oliford_002 stato_022 Mostly successful (in KKM)

~500ms stable reduced turb. transport (higher T_i gradient, impurity accumulation) at \leq 2MW O2 ECRH.

Profiles #20230223.027 5.500 < t < 6.500 7.000 < t < 8.000

Power scaling



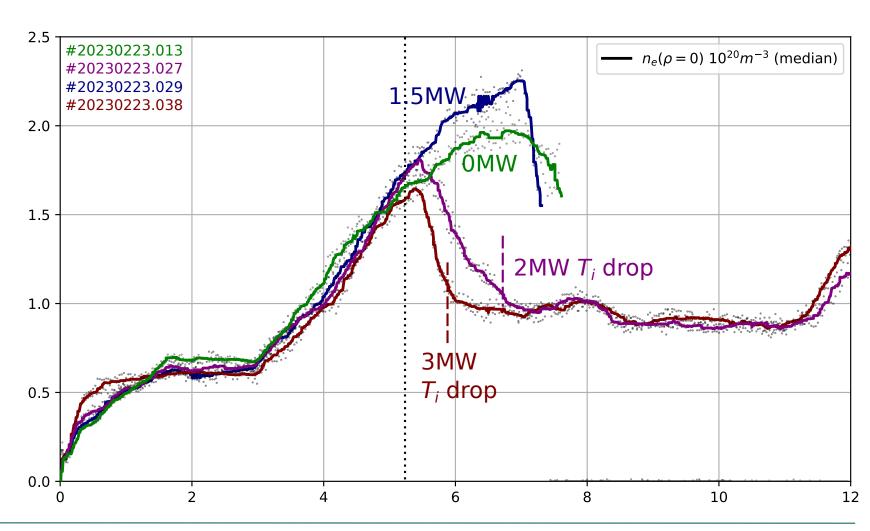
Prio-I:

oliford_002 Determine threshold of P_{ECRH} that drops χ_{eff}

Seems to be scaling of P_{ECRH} on pump-out and hard threshold of density gradient for improved χ_{eff} .

Power scaling

Prio-I:


oliford_002 Determine threshold of P_{ECRH} that drops χ_{eff}

Seems to be scaling of P_{ECRH} on pump-out and hard threshold of density gradient for improved χ_{eff} .

Effect on a/L_{Ti} is strong, but... $\rho_{eff} \sim 0.4$ in high-mirror.

Seems to vary with config.

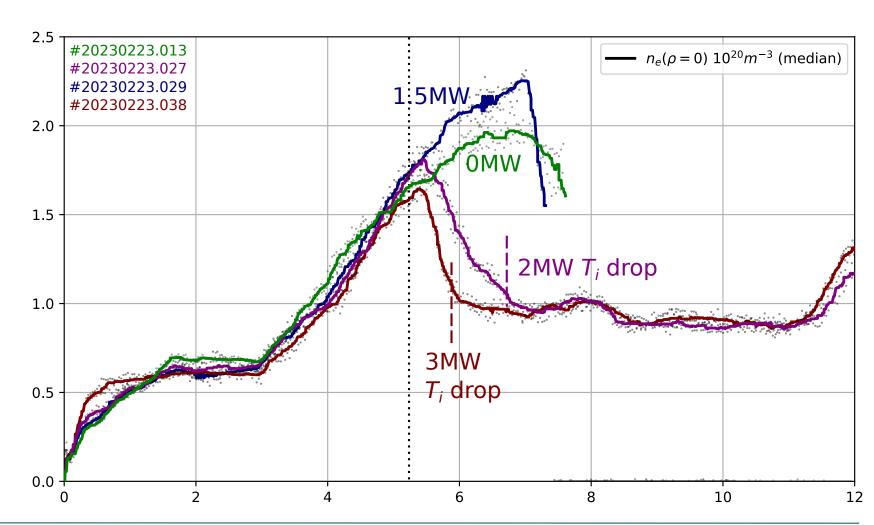
Maybe much more effect
in high-iota (S49+50 next wed)
or standard (S55, S45 ... KW12?).

Power scaling

Prio-I:

oliford_002 Determine threshold of P_{ECRH} that drops χ_{eff}

Seems to be scaling of P_{ECRH} on pump-out and hard threshold of density gradient for improved χ_{eff} .


Effect on a/L_{Ti} is strong, but... $\rho_{eff} \sim 0.4$ in high-mirror.

Seems to vary with config.

Maybe much more effect
in high-iota (S49+50 next wed)
or standard (S55, S45 ... KW12?).

stato_022:

- Threshold different with no X2 absorption?
- Improves with spread out O2?
 No obvious difference.
 Detailed assessment on going.

_	-		_	
Dı	"(^ _	ı	•
Г	1	<i>J</i> -		•

oliford_002 Threshold of P_ECRH into pure NBI for heat transport change stato 022 ECRH into pure NBI with no X2 absoption

Mostly successful: No 3 sources. No approach from non-peaked.

dacar_006 thir_002 Turbulence in suppressed turb. scenarios (DR, PCI, CECE, SXR)
Threshold P_ECRH for impurity transport change

Mostly successful: DR missed 3rd repeat. Good scan of pump-out.

Prio-I:

Threshold of P_ECRH into pure NBI for heat transport change oliford 002 ECRH into pure NBI with no X2 absoption stato 022

Mostly successful: No 3 sources. No approach from non-peaked.

dacar 006 Turbulence in suppressed turb. scenarios (DR, PCI, CECE, SXR) thir 002

Mostly successful: DR missed 3rd repeat. Good scan of pump-out.

Threshold P_ECRH for impurity transport change

alkn 004 Beta effects on edge topology

cbra 011 XMCTS Shafranov shift at different betas

Alfvén Eigenmodes in high beta kbr 10

mspolaor 002 Edge EM turbulence in high beta (MPM probe)

MHD stability in high performance tya 023

Measurements at high-beta:

3x repeats of 'high-beta' phase, but:

- Moderate axis beta ($\beta_0 \sim 3\%$)
- Only on axis good $W_{dia} \sim 800$ kJ
- Non-stationary $n_{\rm e}$ profile.

Prio-I:

oliford_002	Threshold of P_ECRH into pure NBI for heat transport change	Mostly successful: No 3 sources.
stato_022	ECRH into pure NBI with no X2 absoption	No approach from non-peaked.

dacar_006	Turbulence in suppressed turb. scenarios (DR, PCI, CECE, SXR)	Mostly successful: DR missed 3rd repeat.
thir 002		Good scan of pump-out.

alkn_004 cbra_011 kbr 10	Beta effects on edge topology XMCTS Shafranov shift at different betas Alfvén Eigenmodes in high beta	Measurements at high-beta: $3x$ repeats of 'high-beta' phase, but: - Moderate axis beta ($\beta_0 \sim 3\%$)
	Edge EM turbulence in high beta (MPM probe)	- Only on axis good - $W_{dia} \sim 800$ kJ

	•	_			•		8.1
ya	023		MHD stability	in high performa	ance		 Non-stationary n_e profile.

Prio-2:

astechow_011	Turbulence "matching" between pure ECRH and NBI	Couldn't accomodate:
		Initial P/n_o raised to avoid detachment.

P	ri	O	-	l:
Г		v	-1	١.

Threshold of P_ECRH into pure NBI for heat transport change Mostly successful: No 3 sources. oliford 002 No approach from non-peaked. ECRH into pure NBI with no X2 absoption stato 022

dacar 006 Turbulence in suppressed turb. scenarios (DR, PCI, CECE, SXR) thir 002

Threshold P_ECRH for impurity transport change

Mostly successful: DR missed 3rd repeat.

Good scan of pump-out.

alkn 004 Beta effects on edge topology

cbra 011 XMCTS Shafranov shift at different betas

kbr 10 Alfvén Eigenmodes in high beta

mspolaor 002 Edge EM turbulence in high beta (MPM probe)

MHD stability in high performance tya 023

Measurements at high-beta:

3x repeats of 'high-beta' phase, but:

- Moderate axis beta ($\beta_0 \sim 3\%$)

- Only on axis good - $W_{dia} \sim 800$ kJ

- Non-stationary n_e profile.

Prio-2:

Couldn't accomodate: astechow 011 Turbulence "matching" between pure ECRH and NBI

Initial P/n_e raised to avoid detachment.

Additional:

cswee 001, Impurity transport in NBI+ECRH

twegner 007

Provided one iron LBO into NBI+ECRH ... but not in high a/LTi phase.

Mostly sucessful = Good data provided, not necessarily 'complete'!

ECRH program was all addition (no priority)

ksena_001 ECCD exploration

mbeur_007/9 ECRH into pure NBI with no X2 absoption

stato_??? Remote steering launcher comissioning

uhn_013 Bootstrap, on/off-axis ECRH

tya_022 ECRH modulation for MHD stability

2 shots OK, but no crashes seen. Requires too low P/n.

6 shots due to repeat failures. Successful?

Not conducted - RSL not ready?

Density too high.

Not conducted - out of time.

ECRH program was all addition (no priority)

ksena_001 ECCD exploration

mbeur_007/9 ECRH into pure NBI with no X2 absoption

stato_??? Remote steering launcher comissioning

uhn_013 Bootstrap, on/off-axis ECRH

tya_022 ECRH modulation for MHD stability

ICRH Initial ICRH tests

2 shots OK, but no crashes seen. Requires too low P/n.

6 shots due to repeat failures. Successful?

Not conducted - RSL not ready?

Density too high.

Not conducted - out of time.

Some initial ICRH tests in other shots before their session.

ECRH program was all addition (no priority)

ksena_001 ECCD exploration

mbeur_007/9 ECRH into pure NBI with no X2 absoption

stato_??? Remote steering launcher comissioning

uhn_013 Bootstrap, on/off-axis ECRH

tya_022 ECRH modulation for MHD stability

ICRH Initial ICRH tests

2 shots OK, but no crashes seen. Requires too low P/n.

6 shots due to repeat failures. Successful?

Not conducted - RSL not ready?

Density too high.

Not conducted - out of time.

Some initial ICRH tests in other shots before their session.

ECRH program was all addition (no priority)

ksena_001 ECCD exploration

mbeur_007/9 ECRH into pure NBI with no X2 absoption

stato_??? Remote steering launcher comissioning

uhn_013 Bootstrap, on/off-axis ECRH

tya_022 ECRH modulation for MHD stability

ICRH Initial ICRH tests

2 shots OK, but no crashes seen. Requires too low P/n.

6 shots due to repeat failures. Successful?

Not conducted - RSL not ready?

Density too high.

Not conducted - out of time.

Some initial ICRH tests in other shots before their session.

Mostly sucessful = Good data provided, not necessarily 'complete'!