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Abstract

The Imaging Motional Stark E�ect diagnostic (IMSE) is a new optical diagnostic installed at

ASDEX Upgrade to measure current density pro�les in the plasma center utilizing emission from

neutral beam injection. Early test measurements at ASDEX Upgrade have shown an unforeseen

response of the IMSE-system to the Zeeman split Hα-edge emission. The aim of this thesis is

to extend the established theoretical description of the IMSE-system for general measurements

of Zeeman Hα-emission in order to determine if this can be used for an in-situ calibration. The

main di�erence to former theoretical description are the emergence of a non negligible degree

of circular polarisation and smaller multiplett energy splitting. The results are analysed for

varying conditions of magnetic �eld strength and observation geometry. The general theory was

implemented into a forward model, which is based on the measurement geometry and optical

setup for the IMSE-diagnostic at ASDEX Upgrade.

The theoretical investigation has shown, that the for calibration essential polarisation angle can

not be extracted accurately from measurements. Theoretically it can be obtained by �tting

simulated data to measurements. The simulated results from the developed forward model do

not �t the measured data. Several measurements were performed at ASDEX Upgrade to �nd

the reason for the deviation. Nearly all physical reason were excluded, but the essential reason

causing this deviation was not found. First performance test measurements in laboratory imply,

that the diagnostic operates for the Zeeman Hα-emission as theoretically expected, but further

measurement are required to verify this
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Introduction

For over 60 years of nuclear fusion research the ultimate aim has been the development of

an e�cient fusion power plant for economic electricity production. The huge global increase

of energy consumption in the last decades, which result from growing population and global

development demands the exploitation of new energy sources for the future. The strong limitation

of fossil fuels and their support of global warming due to the anthropogenic greenhouse e�ect,

make the search for new energy source urgent. Existing renewable energy systems have the

disadvantage of depending strongly on local environmental factors like su�cient insolation or

wind and therefore require not yet available energy storage and transportation. Other energy

sources are in competition to essential food production like biogas power plants or constitute

strong safety risks for mankind and environment like �ssion reactors. For a fusion power plant,

these fundamental disadvantages are not present or are strongly minimised, so a realisation of a

fusion power plant would play a strong role in solving these problems.

Nuclear fusion is a fundamental physical reaction of two atomic nuclei, which fuse to a single

particle. The released binding energy is transformed to usable kinetic energy. For an economic

fusion power plant the fusion of the hydrogen isotopes deuterium and tritium is expected to

be optimal. Since positive charged particles repulse each other due to coulomb repulsion, high

temperatures and densities are required to archive a high rate of fusion reactions. Under this

condition of high temperature the hydrogen gas is fully ionised and such a gas of free electrons

and ions is denoted as plasma state. For an e�cient fusion power plant, a high rate of fusion

reaction is necessary to produce enough energy to compensate the power needed to maintain the

plasma temperature. For this a good con�nement of particles and energy is essential. A common

limiting criterion for an e�cient fusion device is the triple product of electron density ne, plasma

temperature T and energy con�nement time τE :

neτET ≥ 1021keV
s
m3

(1)

One method to con�ne plasma particles are toroidal magnetic �eld con�gurations, since the

magnetic �eld in�uence the movement of charges particles. Magnetic con�nement is the most

promising way of plasma con�nement for fusion and was investigated in numerous fusion de-

vises like ASDEX Upgrade or Wendelstein AS. The long history of fusion research illustrates

the complexity of physical principles in magnetic con�ned fusion plasmas. To build and operate

a e�cient fusion power plant for stable energy production, an understanding of fundamental

physical plasma processes is essential and requires a lot of theoretical and experimental research.

The correct con�guration of the magnetic �eld is critical for su�cient energy con�nement and

therefore for the e�cient operation of a fusion power plant. Therefore diagnostics are required

to �nd stable magnetic �eld con�gurations and to localise perturbing deviations, which can for

example be caused by evolving plasma instabilities. The great advantage of the Motional Stark

E�ect diagnostic (MSE) is the possibility to obtain localised measurements of the magnetic �eld

con�guration in the center of the plasma, which can not be achieved with the most other diag-

nostics. The main disadvantages of the standard MSE-diagnostic are a strong limitation of data

points and the huge e�ort needed to realise accurately calibrated measurements. The newly de-
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veloped IMSE-diagnostic was designed to measure an entire two dimensional grid of data points

with comparably little e�ort. First performance test in the laboratory and measurements at

ASDEX Upgrade have veri�ed the basic functionality of the IMSE-diagnostic, but have also

demonstrated, that a deeper understanding of the physical principles for the IMSE diagnostic is

still needed to optimise the system to the required accuracy. For the accuracy optimisation of

the current IMSE-system, the greatest challenge is search for a reliable and accurate calibration

method. Until now the IMSE diagnostic can only be calibrated roughly by geometrical mea-

surements of the viewing directions inside the plasma vessel. During the tests the emission of

Zeeman split Hα light from the plasma edge was observed. This was thought may to be usable

for calibration. For this reason it is necessary to investigate the response of the IMSE-diagnostic

to the Zeeman split Hα-edge emission, to improve the fundamental knowledge about the systems

functionality and to prove if this can be used for a more accurate calibration. The focus of this

thesis lies on the development of a theoretical description of the response of the IMSE diagnostic

to the general Zeeman split Hα emission, the discussion of the possibility of calibration, the

development of a forward model to apply the developed theory to the observation geometry at

ASDEX Upgrade and �nally on the interpretation of some initial measured Hα images.

The �rst three chapter of this thesis will introduce a overview of nuclear fusion, the standard

MSE-diagnostic and some basics of polarisation optics. The Zeeman-e�ect and the corresponding

polarisation properties of the Zeeman multiplet will be explained in chapter four. The next two

chapters introduce the mathematical description of the IMSE-diagnostic and the response of the

system to neutral beam emission and to the Zeeman Hα-edge emission. For the later detailed

discussion of the theoretical results will be given with regard to a possible use as a calibration

method. Chapter seven introduces a full simulation for the measurement with the IMSE-system

at ASDEX Upgrade. The simulated results will be compared to measured data including physical

interpretations.
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1 Functional Principles of nuclear fusion and tokamaks

Since this work focuses on an optical diagnostic for the fusion device ASDEX Upgrade, this

section introduces the physical principle of nuclear fusion, some basics on magnetic con�nement

and the concept of a tokamak.

1.1 The nuclear fusion process

Nuclear fusion and nuclear �ssion are two fundamental types of nuclear reactions, which change

the composition of atomic nuclei and so the chemical element. During nuclear fusion, two lighter

nuclei combine to one heavier nucleus, while nuclear �ssion describes the splitting of a heavy

nuclei into several lighter nuclei. The history of nuclear fusion began in 1919 with the �rst

experimental observation of a fusion reaction by Ernest Rutherford [1]. He bombarded nitrogen

with α-particles and perceived the emergence of oxygen. The reaction can be described by the

following reaction equation:
4He + 14N→ 17O + 1H

About 20 years later Bethe and Weizsaecker [2, 3] found the complex process of di�erent fusion

reactions, that explains the energy production inside the sun by fusion hydrogen. Ever since this

time the idea was born to use nuclear fusion as a reliable energy source for mankind. Although

the physical principle of nuclear �ssion was discovered later, it exposed that the implementation

of nuclear �ssion as commercial power plant was easier to realize then for nuclear fusion. The

main reason is, that achieving stable and e�cient conditions for fusion power plant operation is

much more di�cult than for a �ssion reactor, which will be explained later. For a �ssion reactor

the main challenge is the control of the chain reaction for safety, but su�cient energy production

can be reached easily. To understand, why both contrary nuclear reactions can be used to reach

a positive energy gain, the nuclear binding energy is important. Figure 1 illustrates the binding

energy per nucleus EB for nuclei with di�erent mass numbers A, where mass number is the

number of protons and neutrons in one nuclei.

nuclear fission

nuclear 
fusion

area of high 
nucleus stability

Figure 1 � Nuclear binding energy EB per nucleus for nuclei with mass number A. Adapted to [4]
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It can be seen that the binding energy has a maximum meaning exothermic reactions can be

found for fusion of light nuclei and �ssion of heavy nuclei. The binding energy characterizes the

required energy to split a entire nuclei in single protons and neutrons. Nuclear fusion and �ssion

release nuclear binding energy until one of the produced isotope is very stable like for iron. The

released energy is in the order of MeV and can be factors higher per reaction for nuclear fusion as

for nuclear �ssion. This means less mass of starting substance is needed per energy unit for fusion.

Since nuclei are positively charged two nuclei repulse each other due to coulomb force. Only

after the nuclei approach each other in order of few femtometers, the strong interaction induces

the nuclei to fuse. The resulting potential of both e�ects is called the coulomb wall. For the

fusion of two hydrogen nuclei, the potential is 1.2 MeV, which is higher then the averaged thermal

energy inside the sun with roughly 1 keV. Only a huge fraction of high energetic hydrogen nuclei

and a su�cient probability of tunneling through the coulomb barrier makes fusion possible under

this conditions. For a fusion reactor several fusion reactions are possible, but few are e�cient

enough to release a su�cient amount of energy per reaction with high reaction probability. Fig-

ure 2 shows the cross sections for di�erent fusion reactions [5,6]. For realistic temperatures in a

fusion reactor of 20-50 keV, the reaction of the hydrogen isotopes deuterium (A = 2) and tritium

(A = 3) will be optimal, since it has the highest reaction probability. For such temperatures gases

reach a state of high ionisation called plasma due to the separation of electrons and nuclei [7].

Figure 2 � Cross sections of di�erent fusion reactions dependent on the relative kinetic energy of
the reacting nuclei. (Notation: D = deuterium, T = tritium, p = proton, 3He = rare helium isotope
with one neutron) [6]

6



Deuterium and tritium fuse to a helium nucleus (α-particle) and a single neutron by releasing

binding energy. For this reaction the coulomb potential is reduced to 0.36 MeV. The coulomb

wall for this speci�c reaction is sketched in Figure 3.

repulsive 
Coulomb potential

potential of
strong interactionV(r)

nuclei distance r

r0 = 3 fm 

360 keV

-17.6 MeV

~

wall tunneling

Figure 3 � Coulomb wall between a deuterium nuclei and a tritium nuclei. Adapted to [7]

The reaction equation for deuterium-tritium-fusion with binding energy values is given as follows:

2
1D (13.4MeV) + 3

1T (14.9MeV)→ 4
2He (8MeV) + 1

0n (2.4MeV) + (17.6MeV)

The greater part (approx. 14.06 MeV) of the released binding energy of 17.6 MeV is transferred

as kinetic energy to the neutron due to momentum conservation. The kinetic energy of the

neutron is used to produce electricity and new tritium from metal lithium by another nuclear

reaction. The kinetic energy of the α-particle is necessary to preserve the plasma temperature.

The state, when the total power from the α-particles Pα is high enough to balance energy losses

by convection and conduction Pcon and by radiation Prad, is called ignition. In this state of the

plasma, no external heating is necessary. To describe the limit for rising ignition, the following

triple product can be derived from this power balance.

< neτET > =
3
2Pcon T

2

1
4 < σv > f2d Pα − Prad

≥ 1021keV
s
m3

(2)

The equation describes the triple product of electron density ne, the energy con�nement time

τE and the plasma temperature in dependence of the three power values Pα, Pcon and Prad.

< σv > is the characteristic rate coe�cient for the deuterium-tritium reaction and fd is the ion

dilution parameter. To reach a high electron density and a high energy con�nement time, the

plasma particles have to be con�ned long enough to achieve a su�cient rate of fusion reactions by

collisions. In the sun, the con�nement is dominated by the strong gravity, which is not possible

on earth. To realise a fusion reactor on earth, magnetic con�nement is one possibility to reach

this aim. To understand the idea of magnetic con�nement, single particle motions and drifts in

magnetic �elds and ideal magnetohydrostatic equilibria have to be explained [7].
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1.2 Single particle motions and drifts in magnetic �elds

Since plasma particles are electrically charged, their movement can be in�uenced by electric and

magnetic �elds. The trajectory of a particle with charge q and mass m in a electric �eld with

�eld vector ~E and magnetic �eld with �ux density ~B is determined by the Lorenz force ~FL. The

classical equation of motion for such a particle is [7, 8]:

~FL = m
dv

dt
= q( ~E + ~v × ~B) (3)

For further understanding the electric �eld is neglected due to quasi-neutrality of the plasma

and the magnetic �eld is assumed to be constant. It is also useful to split the velocity ~v of the

particle into a component parallel and a component perpendicular to ~B, which means ~v = ~v⊥ +

~v‖. The Lorenz force, which acts perpendicular to ~v and ~B causes the charged particles to gyrate

around the magnetic �eld lines and having constant velocity ~v‖ along the �eld. The frequency

of this motion is cyclotron frequency ωC :

ωC =
|q|B
m

. (4)

The radius of the gyration rL, denoted Larmor radius, can be derived from the force balance

between the Lorenz force and the contrary acting centripetal force as follows:

|FL| = |Fcentripetal| ⇒ rL =
mv⊥
|q|B

(5)

For a ion the Larmor radius rg is larger, but the cyclotron frequency ωC is smaller in comparison

to electron due to the mass di�erence, if the velocity is the same. The direction of rotation

around the magnetic �eld depends on the sign of the charge q and the center of this rotation is

called the guiding center. An illustration of the gyration movement is given in �gure 4.

Figure 4 � Gyration movement in constant magnetic �elds for a electron (left) and a ion (right) [9]

For this derivation ~E was neglected in formula (3). Generalising formula (3) for a arbitrarily

force ~F acting perpendicular to the magnetic �eld ~B results in the following equation of motion:

~FF = m
dv

dt
= F + q(~v × ~B) (6)

This new force term in�uence the general gyration rotation, but introduces a new movement of

the guiding center, called guiding center drift, perpendicular to ~B.
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The general drift velocity is then given by:

~vF =
~F × ~B

qB2
(7)

The most important guiding center drifts in tokamak physics will be introduced in the following

enumeration:

1. ~E × ~B-drift from a perpendicular constant electric �eld

~F ~E = q ~B and ~v ~E =
~E × ~B

B2
(8)

2. ∇ ~B-drift caused by magnetic �eld gradients perpendicular to ~B, where µ = 1
2Bmv⊥ is the

magnetic momentum of the particle

~F∇ ~B = −µM∇ ~B and ~v∇ ~B = −µ∇
~B × ~B

qB2
(9)

3. Curvature drift caused by bending of the magnetic �eld lines with bending radius RC
introducing a centripetal force

~Fc = mv2‖
~Rc
R2
c

and ~vc =
mv2‖

qB2R2
c

~Rc × ~B (10)

For the curvature and the ∇ ~B-drift the direction of the drift velocity depends on the charge of

the particle, whereas the ~E × ~B-drift is for all charged particles in the same direction.

If the plasma is described in the �uid picture, other drifts e�ects can appears. If the �uid pressure

has a gradient perpendicular to the magnetic �eld ~B, the �uid motion of a single plasma species

is in�uenced by the diamagnetic drift with following drift velocity.

~vdiag = −∇p×
~B

qnB2
(11)

This direction of the diamagnetic drift also depends on the particle charge. For a plasma as a

mixture of electron and ion �uid with pressure p = pe + pi the di�erent drift directions lead to

a current, which is called diamagnetic current and can be calculated as follows:

~jdiag = −∇p×
~B

B2
(12)

1.3 Magnetic con�nement and ideal magnetohydrostatic equilibrium

A hot fusion plasma can be assumed to be approximately close to a thermal equilibrium state, in

which the velocity distribution of plasma particles is characterised by a Maxwellian distribution.

In this case the plasma can be described in sense of thermodynamics as an ideal gas with the

ideal gas law pV = NkBT . The kinetic plasma pressure can then be expressed as a sum over the

di�erent particle species with p = ΣinikBTi. If the plasma is con�ned by a magnetic �eld in a

�nite volume V a pressure gradient ∇p is introduced due to conservation of relative momentum.

9



If the plasma has vanishing resistivity and stationary conditions are given (i.e. plasma �uid

has small velocity), the ideal magnetostatic equilibrium equation is valid in zeroth order [7, 8]:

∇p = ~j × ~B (13)

This equation shows, that the force of pressure gradient in a magnetic �eld is balanced by an

induced current jdiag, which is the diamagnetic current, which was introduced in formula 12.

The magnetic �eld, the diamagnetic current and the pressure gradient must be perpendicular to

each other to archive this stable con�nement conditions. It can be shown mathematically, that

for magnetic �eld lines in torus geometry these conditions are achievable.

Remembering the single particle motion, bending of magnetic �eld lines to a simple torus seems

logical for particle con�nement, since particles gyrate around the magnetic �eld lines. But even

if collisions are ignored, particle losses will occur due to the particle drifts. The bending of the

magnetic �eld leads to a gradient of ~B in radial direction. These results in a vertical ∇B-drifts,
which leads to charge separation, since the drift has opposite directions for electron and ions.

The induced electric �eld causes a ~E × ~B-drift pushing all charged particles radially out of the

torus. To avoid particle losses due to radial drifts, a poloidal component can be added to the

magnetic �eld. This leads to a twisting of the magnetic �eld lines, which then create closed

and nested magnetic �ux surfaces (see �gure 5). Each of these �ux surfaces can be related to a

constant value of the magnetic �ux Ψ.

Figure 5 � Flux surfaces and magnetic �eld orientation for toroidal con�nement. [4]

Fundamentally di�erent concepts to add a poloidal magnetic �eld were developed through fusion

history, which are tokamaks and stellerators. Both types will be introduced shortly:

1. Stellerator For a stellerator, the poloidal magnetic �eld component is created by external

coils around the plasma vessel, which allows steady state operation. Di�erent complex

three-dimensional con�gurations of the magnetic �eld and of the coils are possible, opti-

mised by numerical results in progressing plasma theory. In general, the descriptions of

physical properties of a stellerator plasma are more di�cult due to the missing axial sym-

metry. A stellerator also needs much more engineering e�ort and accuracy.
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As an example, �gure 6 illustrates the magnetic �ux surface and the complex coil con�gu-

ration for the stellerator Wendelstein 7-X.

Figure 6 � Flux surface and coil con�guration for the optimised stellerator Wendelstein 7-X. [4]

2. Tokamak In a tokamak, the poloidal magnetic �eld is generated by a high toroidal current

of several MA induced by a transformator coil in the tokamak center. Therefore, only pulse

operation is possible. Additionally, the high current promotes plasma instabilities, which

can lead to high and sudden energy �ows. Since this can result in damage of the plasma

vessel, additional protection components inside the plasma vessel and a careful device

operation is required. The vertical �eld coils are needed to produce together with the

plasma current closed magnetic �ux surface inside the plasma vessel. The con�guration of

the magnetic �eld in a tokamak is only two-dimensional, since the magnetic �eld is axial

symmetric. Therefore physical descriptions of plasma properties and e�ects are in general

simpler, just as building such devices. A picture with the relevant coils in a tokamak and

the magnetic �eld orientation is illustrated in �gure 7.

Figure 7 � Magnetic �eld orientation and relevant coils in a tokamak. [4]
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The magnetic �eld con�guration in a tokamak can be best described in cylindric coordi-

nates. Since a tokamak has a axial symmetry, the function of the magnetic �ux Ψ(R,Z) is

independent of the angle φ. Constant values of Ψ(R,Z) describe a magnetic �ux surface.

Starting from the magnetostatic equilibrium equation in formula (13) a di�erential equa-

tion for the magnetic �ux Ψ(R,Z) can be found. For this it is only necessary to transform

the equilibrium equation in cylindric coordinates and using basic mathematical relations.

The result is the following Grad-Shafranov equation, where p is the pressure and Bφ the

toroidal magnetic �eld [7].

R
∂

∂R

(
1

R

∂Ψ

∂R

)
+
∂2Ψ

∂Z2
= −µ0R2 dp

dΨ
− 1

2

d(RBφ)2

dΨ
(14)

In practise it is only possible to solve the Grad-Shafranov equation numerically. Solving

this equation requires boundary conditions from measurements e.g. the �eld outside the

vessel, which can be measured at the poloidal �eld coils with induction measurements.

Since these are only a integrated values over the magnetic pro�le, this will in general not

give accurately the entire current density pro�le. The current density pro�le, respectively

the complete con�guration of the magnetic �eld, are of interest for understanding the most

dynamic plasma phenomena in tokamaks e.g. special instabilities. To improve the results

from numerical calculations, it is essential to get as much informations about the current

density pro�le as possible from several other measurements. One of these measurements is

the MSE-polarimetry, which leads to data for the local magnetic �eld orientation, especially

the magnetic �eld pitch angle γpitch inside the plasma. This angle is de�ned by the ratio of

the poloidal magnetic �eld Bθ and the toroidal magnetic �eld Bφ in following formula [10]:

tan(γpitch) =
Bθ
Bφ

(15)

The next chapter will introduce the MSE-system on the tokamak ASDEX Upgrade, for

which the new IMSE-system is an improved modi�cation.
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2 MSE-diagnostic on ASDEX Upgrade

The MSE-method is a standard optical diagnostic to achieve informations about the magnetic

�eld direction in tokamaks and stellerators. Results from the measurements are often used

in combination with other measurements to learn more about fundamental plasma dynamic

processes. This chapter will introduce the setup and the measuring principle of the MSE-system

installed on ASDEX Upgrade [11�13]. Discussing advantages and disadvantages will explain the

requirement for the new IMSE-system, which can be directly installed at the existing MSE-system

port at ASDEX Upgrade.

2.1 The MSE-spectrum

The MSE-system measures the emission from high energy neutral hydrogen or deuterium atoms,

which are injected into the tokamak plasma via neutral beam injection (NBI). Since especially the

magnetic �eld information from the plasma center are often required, the neutral beam reaches

wide inside the plasma. Inside the plasma the neutrals become excited by collisions with the

plasma electrons and ions, which leads to characteristic line emission. Typically used for MSE-

measurements are the Balmer-α lines. Due to the high velocity (v ≈ 0.01 · c) of the neutrals,

a Lorenz electric �eld ~E = ~v × ~B is introduced. This causes a splitting of the spectral lines

due to the Stark e�ect, which dominates over the Zeeman-splitting. The light of the di�erent

optical transitions have di�erent polarisation states. Viewing perpendicular to the beam, the

spectral lines denoted with π are linear polarised parallel to the electric �eld, whereas the Σ-

components are also linear polarised but perpendicular to the electric �eld. In �rst order a simple

MSE-multiplett consists of a π−-, π+- and a σ-component, if the quantum mechanic coupling

of Stark- and Zeeman-e�ect is ignored. The high particle velocity also results in a Doppler-shift

relative to background radiation of the entire MSE-multiplett. The neutral beam source not only

produces H and D atoms, but the molecules H2, D2 and H3, D3. The heavier molecules have

smaller velocities of
√

2v and
√

3v, which results in lower values for Stark-splitting and Doppler

shift. A typical MSE-spectrum therefore has three di�erent single MSE-multipletts. A sketch of

a MSE-spectrum is shown in �gure 8.

Figure 8 � Simulated results of an Doppler shifted MSE-spectrum with only main components
(upper part) and with additional sub-levels (lower part). [14]
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Measuring the polarisation state of di�erent MSE-components separately would lead to infor-

mations about the magnetic �eld orientation, whereas the whole MSE multiplett together is

unpolarised. The measurement setup will be explained in the next section [12,13].

2.2 MSE-Setup

The emitted light from the neutral beam is transmitted �rst through di�erent optics to the rel-

evant measurement setup. Starting from the neutral beam the emitted light is re�ected by a

dielectric mirror, which has nearly full re�ectance for the characteristic MSE wavelength range.

This is important, since a normal mirror would change the polarisation direction due to di�erent

re�ectance for parallel and perpendicular polarised light relative to the incident plane. Between

the mirror and the plasma, a silica window (a.k.a. protection cover) and a shutter are installed

to protect the dielectric mirror against contamination and damages through plasma heat. After

the mirror, the light is transferred by some lenses to the setup for polarimetric measurements.

At this position the IMSE-system can be installed. The path of the emitted light through the

optics on ASDEX Upgrade is illustrated in �gure 9.

Figure 9 � Geometry of the MSE-diagnostic on ASDEX Upgrade [15]

The following section explains the standard MSE measurement [11,12]. To separate the polarisa-

tion state in standard MSE-measurements, each of the di�erent viewing directions (MSE channel)

require a very narrow and tunable interference �lters with spectral width under 0.3 nm to sepa-

rate the MSE-components. To measure the polarisation of the separated MSE-components for a

�xed viewing direction, a modulated polarimeter is used. This modulated polarimeter consists

of two piezoelectric modulators (PEM) and a linear polariser. A PEM introduces a time modu-
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lated phase delay to the light wave. The both PEMs are rotated by 22.5◦ to each other and have

two di�erent modulation frequencies ω1 and ω2. Both PEMs together encode the polarisation

direction of the incoming linear polarised light wave in the two modulated phase delays. The

linear polariser converts the phase modulations into amplitude modulations of the light intensity.

The polarisation direction can be achieved from the ratio of these amplitudes for the di�erent

modulation frequencies. Therefore some more electrical components like digitisers are necessary.

Since the amplitude of intensity variation is only a weak signal, an ampli�er is also needed to

increase the signal strength. From the polarisation direction the magnetic pitch angle γpitch can

de calculated, if the system is su�ciently well calibrated. The setup as explained in this section

lead to some advantages and disadvantages for the MSE-diagnostic [12].

The main advantage of any MSE-system and also the new IMSE-diagnostic is the possibility

of pitch angle measurements in the plasma center if the system is calibrated su�ciently. On the

other hand, the standard MSE-method has some meaningful disadvantages:

1. A spectral discrimination of the di�erent MSE-components with narrow �lter is only possi-

ble for a su�ciently high motional Stark splitting, which requires in general magnetic �eld

over 1 T.

2. Since the strength of the Doppler shift varies along the neutral beam, each viewing direction

requires a di�erent narrow �lter. This also allows only a �xed energy of the neutral beam,

because changing the beam energy would also e�ect the strength of the Doppler-shift.

3. Only the measurement of a strong limited number of data points is practical, since each

viewing direction requires the complete polarimetric setup as explained in this section.

4. For each MSE channel a complicated individual calibration is necessary to achieve results

with su�cient accuracy

Especially the strong limit of data points and the expensive need of many optical and electrical

components have lead to the idea of building the IMSE-system, which avoids these intrinsic

problems. To understand the measuring principle of the IMSE-system some physical basics

about polarisation are needed. These are introduced in the next chapter.
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3 Physical Basics of polarisation for optical devices

With the aim of investigating the response of the polarimetric IMSE-system to the Hα-edge

emission in ASDEX Upgrade, a comprehension of the general polarisation properties of light is

necessary. This chapter will explain the di�erent types of polarisation and the physical principle

of birefringence. Afterwards, the Stokes-Müller formalism is introduced to give a general charac-

terisation of basic optical components and their in�uence on arbitrary polarisation states. These

are required to describe the measuring principle of the IMSE-sytem mathematically, which is

described later.

3.1 Characterisation of di�erent types of polarisation

An arbitrary polarisation state of an electromagnetic wave can be described by the polarisation

ellipse [16, 17]. The ellipse is traced out by the time evolving electric �eld vector ~E on a �xed

point in space. The resulting polarisation ellipse is de�ned by the half-axes a and b and can

be represented by the polarisation angle θ and the ellipticity angle χ. The reference frame

for polarisation description in this chapter is given with the coordinates x,y and z. Figure 10

illustrates the polarisation ellipse for this reference frame.

x

y

a
b

θ

χ

E

Figure 10 � Polarisation ellipse in the reference frame (x,y) with polarisation angle θ and ellipticity
χ. [16]

Starting with this general characterisation, the following three types of polarisation can be dif-

ferentiated:

1. Pure linear polarisation (χ = 0◦): The electric �eld vector, changing its strength and sign

periodically, lies along the the half-axis a. The orientation of the plane in which the ~E-�eld

lies relative to a �xed reference frame (x,y), is given by the polarisation angle θ. The

polarisation ellipse is a straight line for this case.
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2. Pure circular polarisation (χ = ±45◦): The electric �eld has a constant strength (i.e.

polarisation ellipse is a circle) and rotates with constant angular velocity in the reference

frame (x,y) perpendicular to the waves propagation direction. The sign of χ relates to the

rotational direction of ~E. Viewing parallel but opposite to the propagation direction, the

light is left circularly polarised (χ = 45◦) if ~E rotates anticlockwise, and right circularly

polarised (χ = −45◦) if ~E rotates clockwise. Since there is no linear part of polarisation θ

is irrelevant.

3. Elliptical polarisation: In all other cases the light is partly linear and circular polarised, so

that the strength and the direction of the electric �eld vector oscillates periodically in the

(x,y)-frame. The greater the absolute value of χ, the greater the circularly polarised part.

The sign of χ indicates the direction of rotation. The angle θ gives the direction, in which

the linear part is polarised and | ~E| has its maximum.

A wave with an arbitrary polarisation state can be constructed by two independent linear waves.

The polarisation planes of these waves are orientated perpendicular to each other and the waves

have a constant phase di�erence φP . If the phase delay between these is a multiple of π the

resulting wave is linear polarised with polarisation orientation depending on the amplitude ratio.

To create circular polarisation the amplitudes have to be identical and the phase delay is π/2.

In each other case the polarisation is elliptical. In the next section a more mathematically way

to characterise polarisation is introduced.

3.2 Stokes-Müller fomalism and discription of optical components

De�nition of Stokes vectors

In applied physics another way of describing the polarisation of light is commonly employed

because of its link to measurable quantities. This is the Stokes-Müller-Formalism, where each

polarisation state can be described by four real values, which are summarized as the Stokes

vector ~s de�ned as follows:

~s =


s0

s1

s2

s3

 =


I

Iptot cos(2θ) cos(2χ)

Iptot sin(2θ) cos(2χ)

Iptot sin(2χ)

 =


〈E2

x + E2
y〉t

〈E2
x − E2

y〉t
〈2E2

xE
2
y cos(φP )〉t

〈2E2
xE

2
y sin(φP )〉t

 =


P0◦ + P90◦

P0◦ − P90◦

P45◦ − P135◦

PRHC − PLHC

 (16)

The Stokes vector depends on θ and χ and the total intensity I of the polarised light. The total

degree of polarisation ptot describes the ratio between polarised intensity and the total intensity

of the light and can be de�ned as in formula (17). Formula (17) also introduces the ratio of

linear polarised light plin and circular polarised light pcirc relative to the total intensity I.

ptot =

√
s21 + s22 + s23

s0
plin =

√
s21 + s22
s0

pcyrc =
|s3|
s0

(17)

An alternative way to calculate the Stokes vectors uses the time averaged amplitudes of ~E in x-

and y-direction and their relative phase φP . To obtain the Stokes vectors experimentally, the
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luminous power Pε of the light after passing an a ideal polariser at angle ε has to be measured,

where ε = 0◦ is orientated in x-direction. PLHC and PRHC are the luminous power of the

left-handed and right-handed part of the polarised light. After characterising polarisation states

with Stokes vectors, the following section introduces the Müeller matrices to describe optical

components.

De�nition of Müller matrices

To analyse the functional principle of a polarimetric system it is essential to describe the e�ect

of optical components on the state of polarisation [16, 18]. Therefore each optical component is

characterised by a Müller matrix M connecting the input ~Sin and output ~Sout polarisation state

of a passing light wave the by following relation:

~Sout = M · ~Sin (18)

Several optical components, which are used as components for the IMSE-system, and their

corresponding Müeller matrices will be explained more in detail is the following passage.

An ideal polariser with optical axis rotated by the angle θA relative to the x-direction of the

reference (x,y)-frame transforms arbitrary polarised light into linear polarised light (χ = 0)

with polarisation angle θ = θA. In general a linear polariser also reduces the intensity. The

corresponding Mueller matrix for an ideal polariser is:

MP (θA) =
1

2


1 cos(2θA) sin(2θA) 0

cos(2θA) cos2(2θA) sin(2θA) cos(2θA) 0

sin(2θA) cos(2θA) sin(2θA) sin2(2θA) 0

0 0 0 0

 (19)

To introduce a phase delay φ between the ordinary and the extraordinary part of a electromag-

netic wave, a delay plate can be used. The separation of a light wave into an ordinary and an

extraordinary wave, if a electromagnetic wave passes through a birefringent crystal, is a result

of a crystal optical anisotropy. This anisotropy can be characterised by the optical axis of the

material, which is de�ned along the direction, where this separation is not introduced. The

ordinary wave has the electric �eld vector perpendicular to the plane generated by the incident

direction of the incoming light wave and the vector in direction of the optical axis. The electric

�eld vector lies inside this plane. The ordinary and the extraordinary wave pass through the

crystal with di�erent velocities, which can be expressed by di�erent refractive indices. The di�er-

ence of the refractive indices result in a phase delay between the ordinary and the extraordinary

component of the light wave. For a delay plate with optical axis rotated at angle θA relative to

the x-direction in the (x,y)-reference frame, the Müller matrix is given as follows:

MD(θA, φ) =


1 0 0 0

0 cos2(2θA) + sin2(2θA) cos(φ) sin(2θA) cos(2θA) (1 + cos(φ)) − sin(2θA) sin(φ)

0 sin(2θA) cos(2θA) (1 + cos(φ)) sin2(2θA) + cos2(2θA) cos(φ) cos(2θA) sin(φ)

0 sin(2θA) sin(φ) − cos(2θA) sin(φ) cos(φ)

 (20)
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An universal explicit formula to calculate the phase delay between ordinary and extraordinary

wave components introduced by a birefringent uniaxial and plane-parallel delay plate was found

by Veiras et al. [19], see equation (21). This formula was derived without any use of approxima-

tions. The important plate parameters are the thickness L, the angle between the optical axis

and the plate interface ρ, and the refractive indices nO and nE for an ordinary and an extraor-

dinary ray passing the birefringent media. The incident wave is characterized by the wavelength

λ, the incident angle α (0◦ ≤ α < 90◦) and the angle δ (0◦ ≤ δ < 360◦) between the plane of

incidence and the projection of the optical axis on the plate interface. The complete geometry

is illustrated in Figure 11. The plates surrounding media has the refractive index nM and the

parameter SV = n2Esin
2(ρ) + n2Ocos

2(ρ) is introduced for clarity.

φ =
2πL

λ

((
n2O − n2M sin2(α)

) 1
2 +

1

SV
(nM (n2O − n2E)sin(ρ)cos(ρ)cos(δ)sin(α))

−
nO{n2ESV − [n2E − (n2E − n2O)cos2(ρ)sin2(δ)]n2M sin2(α)}

1
2

SV

)
(21)

nE 

nO 
L

ρ
δ

α

y

x

z

α

nM 

nM 

Figure 11 � Ordinary (red) and extraordinary (blue) transmission through a unaxial plane-parallel
birefringent plate with refractive indices nE and nO and optical axis (black) surrounded by an
isotropic medium [19].

There are two special delay plates, which are not a component of the IMSE-system, but used

to create de�ned polarisations states. These are needed to realise accurate measurements in

laboratory to test the response of the IMSE-system to elliptical polarised light. These special

wave plates are the 'half-wave'-plate and the 'quarter-wave'-plate, which both have the optical

axis at ρ = 45◦. For a �xed wavelength λ, a special delay plate material with nO and nE and

perpendicular incident angle (α = 0), the plate thickness L can be selected to introduce a �xed

phase delay φF between the ordinary and the extraordinary wave. For a half-wave plate this

phase delay is φF = π and the corresponding Müller matrix is:
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MD(θA, π) =


1 0 0 0

0 cos(4θA) sin(4θA) 0

0 sin(4θA) −cos(4θA) 0

0 0 0 −1

 (22)

The half-wave plate rotates the polarisation angle of the incoming wave (θ −→ θ + 2θA) in de-

pendence of the optical axis orientation θA and switches the rotation direction of the circular

polarised part (sign change of ellipticity χ). As for all delay plates, the total intensity is con-

served [18].

The quarter-wave plate gives a phase delay φF = π/2 with resulting Mueller matrix:

MD(θA, π/2) =


1 0 0 0

0 cos2(2θA) sin(2θA) cos(2θA) − sin(2θA)

0 sin(2θA) cos(2θA) sin2(2θA) cos(2θA)

0 sin(2θA) − cos(2θA) 0

 (23)

MD(0, π/2) =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0

 MD(π/4, π/2) =


1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0

 (24)

A quater-wave plate at θA = 0 or θA = 45◦ switches s3 with s2 or s1. In the case of fully linear

polarised light with polarisation orientation θ as input to a quarter-wave plate with |θ−θA| = 45◦

the wave is total circularly polarised afterwards.

20



4 Zeeman e�ect and Hα-edge emission

In high magnetic �eld like in ASDEX Upgrade the shell energy levels of atoms are split due

to the Zeeman e�ect. During the plasma start up the Zeeman emission from the plasma edge

introduces a measurable signal at the IMSE-system. This leads to idea that this emission is

maybe useful for a in-situ calibration of the IMSE-system. If the neutral beam afterwards is

activated the emission from the motional stark e�ect dominates and the Zeeman e�ect from

the plasma edge is not measurable with the IMSE-system cause of the actual geometry of the

MSE-system. Having the calibration idea in mind, this chapter describes the atomic processes

leading to the splitting of the Halpha-emission in the plasma edge. Since the IMSE-measurement

is based on the polarisation states of the emission, the polarisation properties of the Hα-Zeeman

emission are important. The spectral Hα-line is the brightest spectral line in the entire hydrogen

spectrum. With a wavelength of 656.28 nm, the emitted light lies in the visible range and has a

characteristic red colour.

4.1 Hα-Zeeman e�ect in strong magnetic �elds

In magnetic �elds the energy levels of an atomic shell splits due to the in�uence of the magnetic

�eld to the orbital angular momentum and the spin of the electron. As a consequence more opti-

cal transitions can be observed in spectral measurements. As this work focuses on Hα-emission,

only single electron systems are of interest. [10, 17,20]

For a general description of atomic quantum states, the electronic quantum numbers are in-

troduced here. The principal quantum number n relates to the energy shell of the electron

(Hα-transition: n=3 → n=2). The orbital angular momentum of the electron is described by

the vector ~L, its orbital quantum number l and the magnetic quantum number ml. In the same

way vectors and quantum numbers can be introduced for the spin angular momentum (~S, s, ms)

and the total angular momentum ( ~J , j, mj). In absence of external �elds the orbital angular

momentum and the electron spin are coupled ( ~J = ~L+~S).

In pure magnetic �elds, a splitting of atomic quantum levels is caused by the linear Zeeman

e�ect. The general case, historically named anomalous Zeeman e�ect, includes the spin-orbital

coupling. The normal Zeeman e�ect ignores the electron spin and therefore is only valid if the

spins of several electrons add to vanishing total Spin. This never happens for single electron

systems like hydrogen or deuterium atoms.

The Energy splitting ∆E is linearly proportional to the magnetic �eld | ~B| and can be calcu-

lated as follows:

∆E = gjµB| ~B| (25)

with the Bohr magneton µB = e~/2m0 and g-factor gj . The g-factor for the case of spin-orbital

coupling can be calculated from the quantum numbers by following relation [20]:

gj = 1 +
j(j + 1)− l(l + 1) + s(s+ 1)

2j(j + 1)
(26)
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Optical transitions between di�erent energy levels are only possible, if the selection rule ∆mj =

0,±1 is valid. In strong magnetic �elds the electron spin angular momentum can decoupled

from the electron orbit angular momentum. Is this case the former description is not valid

any more. The decoupling happens, if the coupling between external �eld and orbital angular

momentum or spin angular momentum is stronger then the coupling between electron spin and

its angular momentum. The e�ect is called the Paschen-Back e�ect. The magnetic �eld limit for

the decoupling increases with the proton number and is therefore relatively small for hydrogen

and deuterium. For hydrogen and its isotopes the limit is at around 0.3 T [10]. For Hα-

emission from the tokamak edge plasma the system is entirely decoupled, since typical strength

of magnetic �elds is over 2 T. In the decoupled regime the orbital angular momentum and the

spin angular momentum are independently quantised. The energy splitting is given as sum of

both independent e�ects with:

∆E = (gl∆ml + gm∆ms) µB | ~B| (27)

The g-factor for the orbital angular momentum is gl = 1 and for the spin angular momentum

gs = 2.0023. For optical transitions the selection rule with regard to the angular momentum

is then ∆ml = 0,±1. On the other hand the electron spin is conserved (∆ms = 0) in the

Paschen-Back regime, because of the impossibility of spin-reversal for optical transitions. The

result is a splitting of one spectral line into three lines, denoted as Zeeman multiplett [20]. The

corresponding values for the energy splitting are:

∆E = 0 and ∆E = ±µB | ~B| (28)

With the energy splitting, it is possible to calculate the wavelength of the three Zeeman split

Hα lines dependent on the magnetic �eld strength in the Paschen-Back regime. This is shown

in Figure 12. The calculated value is needed later as input parameter for the simulation of the

IMSE-system and to realise realistic test measurements.

Figure 12 � Zeeman splitting for the Hα-line (656.28 nm) in the Paschen-Back regime
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4.2 Polarisation properties of the Hα-Zeeman multiplett

The three components of the Zeeman multiplett have di�erent polarisation states. A description

of these polarisation states is needed to understand the response of the IMSE-system to the

Zeeman split Hα edge emission. For ∆ml = 0 the electric �eld vector ~E of the emitted wave

oscillates parallel to the external magnetic �eld ~B. This component in the spectrum is named

π-component and vanishes observing in direction parallel to ~B, because there is no wave emission

in this direction. By observation perpendicular to ~B this component shows linear polarisation.

For the lateral components (σ-lines) with ∆ml = ±1 the electric �eld vector ~E rotates per-

pendicular to ~B, so the polarisation state observed in magnetic �eld direction is circular. In

perpendicular observation to the magnetic �eld the σ-components are linear polarised within

the same polarisation plane (same polarisation angle), which is perpendicular to the polarisation

plane of the π-component. The component σ± belongs to E ±∆E transitions. The wave of the

component σ+ with higher frequency is right-handed polarised relative to the direction of the

magnetic �eld, whereas σ− is left-handed polarised. For an overview the di�erent polarisation

states of the Zeeman multiplett for perpendicular and parallel observation are sketched in Figure

13. [10, 20].

π σ+σ-

B longitudinal 

B transverse
Figure 13 � Polarisation states of the Zeeman multiplett for observation parallel and perpendicular
to the magnetic Field [10].
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So far the polarisation states of the Zeeman multiplett were only described as observed parallel

and perpendicular to the magnetic �eld. For the diagnostic geometry at ASDEX Upgrade, the

Hα-Zeeman emission from the plasma edge is not observed parallel or perpendicular. Therefore

a more general description of the polarisation states is needed. For an observer with line-of-sight

in ~dz-direction the angle γ is de�ned as angle between ~dz and magnetic �eld ~B. In a �xed nor-

malised Cartesian coordinate system (see Figure 14) with ~dx × ~dy = ~dz the polarisation angle β

is the projection of the magnetic �eld vector ~B onto the plane generated by ~dx and ~dy. In general

there is a degree of freedom of de�ning the polarisation angle, because the coordinate system

can be rotated around ~dz, but relative to the polarisation plane of the observed light wave . To

make polarisation angles comparable a �xed reference frame must be chosen, which means that

also ~dx and ~dy have �xed directions [21].

dz

dy

dx

B
γ

β

Figure 14 � De�nition of the coordinate system for an observer with line of sight in direction ~dz [21]

The angle γ and the polarisation angle β can then be calculated using the following vector

identities:

cos(γ) =
~B · ~dz
| ~B|

tan(β) =
~B · ~dx
~B · ~dy

(29)

To describe the response of polarimetric measurements to the Hα Zeeman multiplett, it is useful

to describe the polarisation states of the di�erent Zeeman components with Stokes vectors. The

Stokes vectors can be calculated with following formulas [21,22]:

sπ = Iπ


sin2(γ)

s1

s2

0

 sσ
±

= Iσ
±


1 + cos2(γ)

−s1
−s2
∓s3

 (30)

In formula (30) 2Iσ
±

= Iπ are component irradiances and stokes parameter are de�ned by

(s1, s2, s3) = (sin2(γ) cos(2β), sin2(γ) sin(2β), 2 cos γ). Observing each of the Zeeman compo-

nents separately, the component is fully polarised. If the entire Zeeman multiplett is observed

together ignoring wavelength the resulting light is unpolarised, which is the same as for the MSE

multiplett. In following ratio between linear and circular polarised parts of the di�erent Zeeman
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components are explained more in detail. The π-component has only linear polarisation, but is

fully polarised, so the degrees of polarisation are pπtot = pπlin = 1 and pπcirc = 0. The σ-components

are also fully polarised pσ
±
tot = 1, but the ratio of linear and circular polarisation changes with γ.

This is illustrated in �gure 15.

Figure 15 � Degree of polarisation and ratio of linear and circular polarised part for a σ-component
depending on viewing angle to the magnetic �eld γ.

For 0◦ < γ < 90◦ the σ±-components are elliptically polarised. Since the angle γ determines the

ratio between the linear and the circular polarised part, it is directly related to the ellipticity χ

of the polarisation state. The conversion between both angles is given by the following relation:

tan(2χ±) =
∓2 cos(γ)

sin2(γ)
(31)

4.3 Emergence of Zeeman Hα emission at the plasma edge

The main information required for this thesis from atomic processes in the plasma is the spatial

distribution of excited hydrogen particles in the plasma edge, since this is important for the de-

velopment of a forward model later. The Zeeman-split Hα emission in the plasma edge is mainly

caused by the recycling of hydrogen atoms from the plasma. Due to di�erent transport mech-

anisms is the plasma like anomalous transport the hydrogen ions drift into the direction of the

plasma edge, where the electron temperature T is lower. In this region they become neutralised

by electron capture on and near the wall or limiter, where they slow done and then drift slowly

back inside the plasma. There they are ionised and rejoin. Due to the high temperature in the

center, the plasma is fully ionised and the density of neutral hydrogen particles nH vanishes,

so no emission from bounded electrons is possible in that region. Near the wall or limiter, the

ion density ni and the electron density ne decrease due to decreasing electron temperature Te
and the neutral particle density nH increases (see Figure 16). The main excitation mechanism

for the hydrogen neutrals are collisions. Since the particles in the limiter shadow or near the

wall are very slow, collision rates are small and therefore also the density of excited neutral

25



hydrogen atoms nH∗ . Both e�ects together explain, why the Hα emission has its maximum in a

small layer close to the last close �ux surface and in the middle between plasma edge and wall.

For observation of Hα-edge emission near the limiter (see Figure 37) the distribution of nH∗ is

di�erent. For this case, the density of excited hydrogen particles nH∗ is maximal for a position

very close to the limiter, where the density decreases dramatically in a very narrow layer. This

is caused by a high collision rate due to the high electron density ne and temperature Te in front

of the limiter [23,24].
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Figure 16 � Plasma cross section plot for intensity of Dα-emission, neutral density, electron density
and electron density [24].
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5 Standard IMSE-Diagnostic

After the description of the relevant basics in polarisation optics and the standard MSE-diagnostic,

this chapter explains the measuring principle of the new IMSE-system. Therefore the basic com-

ponents of the IMSE-diagnostics will be explained followed by the mathematical description of

the system. This also includes the response of the IMSE-diagnostic to the MSE-spectrum and

the main features of data evaluation. Based on the mathematical characterisation of the IMSE-

diagnostic in this chapter, a theoretical description of the response of the IMSE-system to the

Zeeman edge emission can be derived later.

5.1 IMSE-Setup and measuring principle

In chapter 3 it was described that the measurement of the entire MSE-multiplett from the neutral-

beam emission with a normal polarimeter leads to no results, since the polarisation integral of the

MSE-spectrum over wavelength is always unpolarised. Therefore, a normal MSE-diagnostic re-

quires narrow spectral �lters to extract the polarisation state of the individual MSE-components.

Since the MSE-spectrum changes along the neutral beam due to Doppler shift and changes of

magnetic �eld each spatial data point needs di�erent �lters and a separate calibration. In addi-

tion with the need of several electrical devices for each spatial point this leads to high costs and

a severe limitation of data points.

To avoid this problem the IMSE-System was invented, which is a modi�ed version of a simple

imaging polarimeter. It can measure the line-integrated polarisation information of an entire

two-dimensional data array in one measurement. The number of data point for this system is

then mainly limited by the fringe resolution, which is approximately 1/6 CCD-camera resolution.

The camera has 240 times 320 pixel. To understand the measuring principle of the IMSE-system,

it is useful to explain a simple imaging polarimeter �rst. The simple polariser consists of a dis-

placer plate and a polariser, which are placed between two lenses. The schematic setup of simple

polariser is illustrated in Figure 17.

Displacer 
   φd(x) 

Analysing 
 Polariser

Objectiv 
  Lens

Imaging  
  Lens

x

z

CCD

Source of
Emission

Figure 17 � Schematic setup of a simple imaging polariser
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The displacer is a birefringent plate introducing a phase delay φD(x) between the ordinary

and the extraordinary wave. This phase delay depends on the incident angle of the incoming

wave to the plate. Since the incident angle is di�erent for each viewing direction the phase delay

is changing across the plate in one direction (de�ned as x-direction). The polariser transforms

this phase delay change to an interference pattern, which is recorded by a CCD-camera. The

polarisation angle θ of the incident light changes the ratio of the ordinary and extraordinary wave

and so e�ect the amplitude I ∝ 1 + cos(2θ) of the resulting fringes (i.e. oscillations along across

the image). The polarisation information is then encoded in the amplitude of the fringes, which

proceed across the image in x-direction. The number of fringes mainly depend on the thickness

of the displacer plate. The number of fringes are important, because they also determine the

resolution of the measurement. Only if the variation of the polarisation across the image is small

against the fringes oscillation, the imaging polarimeter has a su�cient resolution.

Measuring the entire MSE-spectrum from the neutral-beam emission with such a simple po-

larimeter, the total interference pattern would vanish, since the fringes of the σ-component and

the π-components interfere destructively (i.e. having a phase di�erence of 180◦), see Figure 18

(left). This re�ects the fact, that the entire MSE-multiplett is unpolarised.

Figure 18 � Test measurements for the fringes in x-direction of the entire MSE-multiplett:
Left: contructive interference of the fringes for a setup without delay plate
Right: constructive interference due to phase delay from used delay plate [25]

For the standard MSE-diagnostic a spectral discrimination of the several components is achieved

by using di�erent narrow interference �lters. For the IMSE-system spectral discrimination is

achieved by implementing a delay plate between the displacer and the polariser in the setup of

a simple imaging polarimeter. This plate introduces a phase delay φW to each incoming waves,

which depends on the wavelength and the thickness of the plate, but is approximately constant

across the image. As a result the phase di�erence of the fringes introduced from the σ-component

and the π-components shifted relative to each other. Choosing the correct delay plate would re-

duce the phase di�erence to zero and the fringes then interfere constructively, see Figure 18

(right). For this the delay-plate has to meet essential requirements. It needs to be relatively

thick, so that the absolute phase delay is in order of thousands wavelengths. Only in this case

is the dependence of the fringe phase on the wavelength su�ciently large. Secondly choosing a

suitable plate thickness with regard to the wavelength di�erence of the MSE-components will

shift the phase di�erence between the σ-component and the π-components to achieve construc-

tive interference. This is one reason the diagnostic is optimized to measure the MSE-spectrum.
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The Zeeman Hα emission has a di�erent energy splitting and circular polarised fractions, so the

IMSE-system may give a di�erent response. Since the MSE-spectrum in general is more complex

than described by only three superior components, a thick delay plate reduces the amplitude of

the fringes by an unknown factor ξ due to interference of the MSE sub-levels. The factor ξ is

denoted as spectral contrast and is an unknown quantity, which must be eliminated. To separate

the polarisation information from the spectral contrast a second displacer is added between the

objective lens and the displacer in a way to produce a phase delay φS(y) in y-direction and

therefore fringes, which are orthogonal to the former fringes. To avoid a perturbation of the

optimized phase di�erence between the fringes, this displacer is not allowed to introduce a net

phase delay, which is constant over the image. Such a special displacer is named a Savart plate

and practically consists of two displacer plates with orthogonal orientated optical axes.

An facultative optical component in the IMSE-system is the ferroelectric-liquid crystal plate

(FLC-plate) located between objective lens and Savart plate. The optical property of this plate

is the same as a quarter-wave plate, but its optical axis can be switched by applying a voltage. If

the FLC-plate is switched o�, it does not change the physical principle of the IMSE-diagnostic.

In the activated case the FLC-plate can be used to measure small ellipticity e�ects of the MSE-

polarisation that might lead to deviations of the polarisation angle.

CCD-Camera

Objetiv Lense
Imaging Lense

Filter Changer

Polarisator Wheel

Temperatur Chamber 
with Plate Optics 

Figure 19 � Photo of the IMSE-System

A photo of the IMSE-Setup is shown in Fig. 19. All optical plates are �xed in a closed metal

chamber. An external controllable heating system is used to stabilise the temperature within the

chamber and so the optical properties of the optics and especially of the FLC-plate. Di�erent

types of �lter can be �xed in the �lter changer and changed via software control. Measuring the

MSE-spectrum a �lter is used to suppress perturbing emission from charge-exchange transitions
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and from the plasma edge. For the Zeeman Hα edge-emission another �lter is required. The

polarisation wheel has partly simple a hole for normal measurement and another hole with a

polariser �lm. Its function is to measure the intrinsic contrast of the system leading to deriva-

tions of the polarisation angle. This e�ect is a result of small, but for high accuracy important

variation, of the Savart plates thickness and of surface irregularities. All of these technical com-

ponents of the IMSE-system are built into a stable metal construction, that can be applied on

the MSE-port at ASDEX Upgrade [25�27]. In the next section the entire MSE-system will be

described mathematically.

5.2 Mathematical description of the IMSE-diagnostic

The following section will give the entire mathematical description of the IMSE-system. The

�rst part of the calculation is identical for the MSE- and the Zeeman-spectrum. However, it is

important to understand this calculation to derive the response for the several spectra later and

to make sure that all approximations are still valid for the general case. The �gure 20 illustrates

schematically the setup of the IMSE-System with the important optical components needed to

consider the full characterisation of the IMSE-system.
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  Lens
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MSE- System
     (AUG)

FLC
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Figure 20 � Schematic setup of the IMSE-System including optic axis orientation [26]:
a) View from above with optical axis orientation relative to the plate surface
b) View in z-direction with orientation of the optical axis relative to the (x,y)-plane

De�nition of the system coordinates for the IMSE-system

The systems coordinates x and y are de�ned in the orientation of the CCD-Camera. The notation

of the corresponding polar coordinates is (RI , δI) with δI = 0◦ orientated in x-direction. Knowing

the focal length of the imaging lens fi = 50 mm and the pixel size on the CCD-camera (∆x =

∆y = 19.8 µm), RI can be substituted by the incident angle αI with following relations:

x = cos(δI) RI = cos(δI) sin(αI) fi (32)

y = sin(δI) RI = sin(δI) sin(αI) fi
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The calculated values of the angles αI and δI for the CCD-camera are shown in �gure 21.

Figure 21 � Calculated values of the incident angle (left) and of the system angle (right) for the
320 × 240 pixel of the CCD-camera

The IMSE-System measures polarisation relative to the Savart-plate, that is rotated 45◦ anti-

clockwise relative to (x,y). Therefore, it is reasonable to de�ne the polarisation angle θS of the

incoming light in such a way that θS = 0◦ is aligned in (x+y)-direction (see Fig. 20b).

Calculation of the IMSE image equation

The response of the IMSE-System to arbitrarily polarised light with a single wavelength λ can

be described by using the Stokes-Müller formalism (section 3.1). Each optical element is denoted

by a Müller matrix M and the polarisation state of the input light is given by the Stokes vector

~s. The orientations of the plates optical axes are:

1. FCL plate at θS = 0◦ (FLC-O�) or θS = −45◦ (FLC-On)

2. Savart plate with thickness LS = 7.6 mm at θS = 0◦ introducing phase delay φS

3. Displacer plate with thickness LD = 5.4 mm at θS = −45◦ with phase delay φD

4. Delay plate with thickness LW = 1.2 mm at θS = −45◦ gives phase delay φW

5. Polariser at θS = 0◦

The displacer plate and the delay plate have the same orientation relative to θS and are directly

adjecent in the IMSE-system. They can be denoted together by one Müller matrix:

M(−45◦, φW + φD) = M(−45◦, φW ) ·M(−45◦, φD) (33)

The entire description of the IMSE-System in Stokes-Müller formalism is then given by matrix

multiplication of the Müller matrices for the single components. ~S is the stokes vector after the

light with polarisation state ~s has passed the complete system. The complete equation for the

entire IMSE-system is:

~S = MP
Polariser(0

◦) ·MD
Displacer+Delay(−45◦, φW + φD) ·MD

Savart(0
◦, φS) ·MD

FLC · ~s (34)
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To include di�erent settings of the FLC-plate to the theoretical description, the Stokes vector

~̂s is introduced. ~̂s gives only the response of the FLC-plate to the input stokes vector ~s and is

de�ned as follows:

ŝ = MD
FLC · ~s (35)

The di�erent modi of the FLC-plate are represented by the following Müeller matrices,

MNo
FLC =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 M
Off
FLC =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0

 MOn
FLC =


1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0

 (36)

whereMNo
FLC means, that the FLC-plate is removed from the IMSE-system. The matricesMOff

FLC

and MOn
FLC are describing the switched o� and the switched on modi.

Considering the Müller matrices of the di�erent IMSE-components and using the introduced

FLC-plate notation, equation 34 ca be rewritten as:

~S =
1

2


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0




1 0 0 0

0 cos(φW + φD) 0 sin(φW + φD)

0 0 0 0

0 -sin(φW + φD) 1 cos(φW + φD)




1 0 0 0

0 1 0 0

0 0 cos(φS) sin(φS)

0 0 -sin(φS) cos(φS)



ŝ0

ŝ1

ŝ2

ŝ3

 (37)

The CCD-camera measures only absolute intensity. The intensity on the CCD-camera is given

by the intensity component of the resulting Stokes vector S0 = IImage. The resulting equation is

called image equation of the IMSE-system, where all phase delay and all four Stokes parameter

are a function of the system coordinates x and y:

2IImage = ŝ0 + ŝ1 cos(φW + φD)

− ŝ2 sin(φW + φD) sin(φS) (38)

+ ŝ3 sin(φW + φD) cos(φS)

Calculation of phase delay for the IMSE-plates

To calculate the phase delays of the individual plates, equation (21) is used. The incident angle

αI on the plates is lower than 5◦ across the image (see Fig. 21), so terms in order of sin2(αI)

will be ignored. Operating in air the refractive index of the surrounding media is nM = 1, and

therefore equation (21) simpli�es to:

φ =
2πL

λ

(
nO −

nO nE√
SV

+
n2O − n2E
SV

sin(ρ) cos(ρ)cos(δI)sin(αI)

)
(39)

All birefringent plates of the IMSE-system are made of α-barium borate (αBBO). The refractive

indices of αBBO for the ordinary and the extraordinary wave are a function of the wavelength

λ. In the small wavelength ranges for MSE- and Hα edge-emission, the refractive indices can
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be assumed as constant values with nO = 1.666 and nE =1.549 [28]. In the case of ∆N =

nO − nE << nO, nE it is possible to approximate the constant term (i.e. independent of αI) in

Equation (39):

φ =
2πL

λ

(
∆N

2
+
n20 − n2E
SV

sin(ρ) cos(ρ)cos(δI)sin(αI)

)
(40)

The delay plate with has the optical axes parallel to the plate surface (ρ = 0◦), therefore it

introduces a constant phase delay φW , whereas the displacer plate (ρ = 45◦) causes an incident

angle dependent phase delay φD. The phase delays of the displacer plate and the delay plate

are:

φW =
2πLW
λ

(
∆N

2

)
(41)

φD =
2πLD
λ

(
∆N

2
+
n2O − n2E
n20 + n2E

cos(δI)sin(αI)

)
(42)

The Savart plate consists of two displacer plates (ρ = 45◦) of the same thickness LS
2 and with

orthogonal orientated optical axes, i.e. one lies at δI + 45◦ and the other at δI −45◦. The second

plate is assumed to add a negative phase delay. Contrary to the single displacer plate the Savart

plate gives no constant phase delay and for a wave with perpendicular incident (αI = 0◦) it

introduces no delay at all. The phase delay of the Savart plate is given by:

φS =
2πLS2
λ

(
∆N

2
+
n20 − n2E
n20 + n2E

cos
(
δI −

π

4

)
sin(αI)

)
(43)

−
2πLS2
λ

(
∆N

2
+
n20 − n2E
n20 + n2E

cos
(
δI +

π

4

)
sin(αI)

)

A short rearranging of equation 43 results in the following total phase delay for the Savart plate:

φS =
2πLS√

2λ

(
n20 − n2E
n20 + n2E

sin(δI)sin(αI)

)
(44)

Replacing the wavelength λ by the frequency ω, the vacuum light velocity c with λω = 2πc and

using the geometrical relations in equation (32), the phase delays can be expressed as directly

proportional to the system coordinates x and y:

φS = cαωy (φW + φD) = cβωx+ cγω (45)

This is only true, when second-order terms of the incident angle are ignored. Taking the second-

order term into account would only lead to a negligible dependence of the phase delay in second-

order of x and y (see Fig. 22).
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Figure 22 � Calculation of the phase delays as example for Hα-emission (λ = 656.28 nm):
- Upper part: phase delay with use of system speci�c constants ignoring second-order of
incident angle
- Lower part: phase delay without approximations including second-order of incident angle

The prefactors in the phase delay terms in equations (41), (42) and (44) are collected in the

three speci�c system constants cα, cβ and cγ with N2 = (n20 − n2E)/(n20 + n2E):

cα =
LS N

2

√
2 c fi

= 2.6 · 10−11

cβ =
LD N2

c fi
= 2.6 · 10−11 (46)

cγ =
∆N

c

(
LW +

1

2
LD

)
= 1.5 · 10−12
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The complete image equation (38) for a single wavelength or frequency ω with substituted phase

delays and introduced system constants can be written as:

2IImage(~̂s, ω) = ŝ0 + ŝ1 cos(cβωx+ cγω)

− ŝ2 sin(cβωx+ cγω) sin(cαωy) (47)

+ ŝ3 sin(cβωx+ cγω) cos(cαωy)

= ŝ0 + ŝ1 cos(ω(cβx+ cγ))

+
1

2
ŝ2 cos(ω(cβx+ cγ + cαy))

− 1

2
ŝ2 cos(ω(cβx+ cγ − cαy)) (48)

+
1

2
ŝ3 sin(ω(cβx+ cγ + cαy))

+
1

2
ŝ3 sin(ω(cβx+ cγ − cαy))

This section introduced the theoretical description leading to the interference pattern on the

CCD-camera. The following section explains how the polarisation information can be extracted

from the measured interference image during the data evaluation process.

5.3 Principle of evaluation of the polarisation information from IMSE mea-

surements

As long as the fringe oscillations along the picture are very fast in comparison to the change of

the stokes components, it is possible to extract the stokes components (and so the polarisation

angle) from the image. Therefore a two-dimensional Fourier transformation is applied to the

IMSE image. In the general case, the Fourier image of the IMSE interference pattern shows

seven Fourier components, since the image equation can be expressed as sum of seven di�erent

complex exponential functions as written in following equation, where 0 and ± characterises the

sign of the dependence of Fourier component I(x,y) to the coordinates x and y. For example

I(+,−) is the Fourier component proportional to the exponential function ei(x−y).

IImage = I(0, 0) + I(+, 0) + I(−, 0) + I(+,+) + I(+,−) + I(−,+) + I(+,+) (49)

An example for an Fourier image with the sever Fourier components is illustrated in Figure 23

(right). The seven Fourier components then are given by the following relations:

I(0, 0) =
1

2
ŝ0

I(±, 0) =
1

4
ŝ1e

iω(±cβx±cγ)

I(±,±) =
1

8
(ŝ2 ∓ iŝ3)e±iω(cβx+cγ+cαy)

I(±,∓) = −1

8
(ŝ2 ± iŝ3)e±iω(cβx+cγ−cαy)

35



Figure 23 � IMSE image with fringes from measured neutral beam emission (left) and example of
a Fourier image with the seven Fourier components (right). [14].

Cutting out a Fourier component in the Fourier image and applying the inverse two-dimensional

Fourier transformation results in a two-dimensional, in general imaginary, array containing the

information of the one Fourier component across the entire image. Taking the absolute value gives

the real amplitude of this component, which is independent of the frequency ω. The amplitudes

of the Fourier components can be calculated by |I(x, y)| =
√
I∗(x, y)I(x, y) resulting in:

|I(0, 0)| =
1

2
|ŝ0|

|I(±, 0)| =
1

4
|ŝ1| (50)

|I(±,±)| = |I(∓,∓)| =
1

8

√
ŝ2

2 + ŝ3
2

The frequency independence is important especially for measuring the MSE-multiplett, since due

to the Doppler-shift the wavelength is not �xed and in general not accurately known. For the

IMSE-system without FLC-plate (ŝ2 = s2 and ŝ3 = s3) and with o�-switched FLC-plate (ŝ2 = s3

and ŝ3 = −s2) the amplitudes are identical, so the general measuring principle is not in�uenced

by the FLC-plate. For measuring emission with only a single frequency a separation of s2 and

s3 is impossible without the FLC-plate, but if the measured light is fully linear polarised (χ = 0

and s3 = 0) or has only negligible ellipticity, the polarisation angle relative to the Savart plate

can be achieved using the following relation:

tan 2θS =
|s2|
|s1|

=
2|I(+,+)|
|I(+, 0)|

(51)

Switching the FLC-plate on (ŝ1 = −s3 and ŝ3 = s1) allows to measure the absolute value of the

ellipticity independently from the polarisation angle.

| tan 2χ| =
√
s21 + s22
|s3|

=
2|I(+,+)|
|I(+, 0)|

(52)
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If during a measurement the FLC-plate switches faster on than the polarisation state can change

signi�cantly in time, a measurement of θS for an arbitrary polarisation state is possible by

eliminating the ellipticity during the data evaluation, allowing a complete measurement of ~s.

5.4 Response of the IMSE-System to the MSE multiplett

Until now the response of the IMSE-system to arbitrarily polarised light of a single wavelength

was described mathematically. For the response of the system to the entire MSE-spectrum the

calculation will be extended to several wavelength. To describe the characteristic response of

the IMSE-system to the MSE-spectrum it is su�cient to neglect the complexity of the MSE-

spectrum (see �gure 8) and consider only the three superordinate MSE-components. Determining

the central σ-component to have frequency ωσ = ω0 and the polarisation angle θS , the two lateral

π±-components can be denoted with the frequencies ωπ
±

= ω0 ±∆ω and the polarisation angle

θS + 90◦. The stokes vectors of the simpli�ed MSE-multiplett with parameters (s1, s2, s3) =

(cos(2θS), sin(2θS), 0) are:

sσ = Iσ


1

s1

s2

s3

 sπ
±

= 1
2I

π


1

−s1
−s2
−s3

 (53)

Since the π±-components of the MSE-spectrum are entirely linear polarised the Stokes vectors

sπ
+
and sπ

−
are identical ignoring possible intensity variations e.g. due to �lters. In general the

σ-component can show very small ellipticity which is ignored as it does for not in�uence the re-

sults fundamentally. The image on the CCD-camera is the sum of the images for each of the three

MSE-components, since the phase of single emission events from di�erent MSE-components are

statistically independent with random pahse. The total image-equation for the MSE-multiplett

can be simply calculated using the trigonometric addition theorems. The result is the following

image equation for the MSE-multiplett:

2IMSE
Image = 2IImage(ŝ

σ, ω0) + 2IImage(ŝ
π−
, ω0 −∆ω) + 2IImage(ŝ

π+
, ω0 + ∆ω)

= Iσ + Iπ

+ ŝ1ξ0 cos(ω0(cβx+ cγ)) (54)

+
1

2
ŝ2ξ+ cos(ω0(cβx+ cγ + cαy))− 1

2
ŝ2ξ− cos(ω0(cβx+ cγ − cαy))

+
1

2
ŝ3ξ+ cos(ω0(cβx+ cγ + cαy)) +

1

2
ŝ3ξ− cos(ω0(cβx+ cγ − cαy))

The total image-equation is similar to the image-equation (48) for a single wavelength with

factors ξ0, ξ− and ξ+.
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These are the spectral contrast de�ned as follows:

ξ0 = Iσ − Iπcos(∆ω(cβx+ cγ))

ξ+ = Iσ − Iπcos(∆ω(cβx+ cγ + cαy)) (55)

ξ− = Iσ − Iπcos(∆ω(cβx+ cγ − cαy))

For the center of the image (incident angle αI ≈ 0◦ and x, y ≈ 0) or a thin displacer and Savart

plate the spectral contrast functions are approximately equal and can be reduced to the constant

function ξ (independent of x and y), which is denoted as spectral nett contrast:

ξ = Iσ − Iπcos(cγ∆ω) (56)

The spectral nett contrast in�uences the signal strength of the measurement and is therefore

desired to be maximal. It is optimised to the MSE-multiplett (i.e. a given ∆ω) by selecting a

suitable cγ , which is related to the thickness of the delay plate LW (see equation (46). If the

net delay is removed from the IMSE-system, cγ an ξ are zero and the fringes for the σ- and

π-components interfere destructively resulting in the vanishing of the interference pattern on the

CCD-camera. For the Zeeman multiplett this optimisation is not valid, since the frequency split-

ting is di�erent. As long as the MSE emission from the neutral-beam comes from atomic states

with statistical population, the intensity ratio is Iσ = Iπ = 1. A deviation from the statistical

population e.g. for small neutral-beam densities, may decrease the spectral nett contrast and the

absolute intensity, but the polarisation information is not strongly a�ected. To obtain the polar-

isation angle from the measured CCD-image, the demodulation of the seven Fourier components

by two-dimensional Fourier transformation is again performed and leads to the following Fourier

components:

I(0, 0) =
1

2
(Iσ + Iπ)

I(±, 0) =
1

4
ξ0ŝ1e

iω(±cβx±cγ) (57)

I(±,±) =
1

8
ξ+(ŝ2 ∓ iŝ3)e±iω(cβx+cγ+cαy)

I(±,∓) = −1

8
ξ−(ŝ2 ± iŝ3)e±iω(cβx+cγ−cαy)

The resulting amplitudes are:

|I(0, 0)| =
1

2
(Iσ + Iπ)

|I(±, 0)| =
1

4
ξ0|ŝ1| =

1

4
ξ0|s1| (58)

|I(±,±)| =
1

8
ξ+
√

(ŝ2)2 + (ŝ3)2 =
1

8
ξ+|s2|

|I(±,∓)| =
1

8
ξ−
√

(ŝ2)2 + (ŝ3)2 =
1

8
ξ−|s2|
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The argument for the in�uence of the FLC-plate is the same as in case of a single frequency (no

FLC: ŝ2 = s2 and ŝ3 = s3 = 0 / FLC-O�: ŝ3 = −s2 and ŝ2 = s3 = 0).

For the MSE-spectrum the amplitudes |I(±,±)| and |I(±,∓)| are slightly di�erent due to a

small asymmetry of the contrast functions. The relation between the polarisation angle θS and

the fringe amplitudes is:

tan 2θS u
ξ+
ξ0
· |s2|
|s1|

=
2|I(+,+)|
|I(+, 0)|

(59)

The small di�erence between ξ0 and ξ+ results in an error of the polarisation angle depending

on y. The di�erence of ξ0 and ξ± is caused by two e�ects. The �rst is the general di�erent

dependence of the spectral contrast function on the system coordinates x and y according to

equation (55). Secondly the ξ±/ξ0 -ratio is also e�ected by the intrinsic contrast of the Savart

plate caused by surface irregularities. Test measurements and simple simulations have approved

following relation to give more precise results for the polarisation angle, since the error increases

only in second order of y.

tan2 2θS u
ξ+ ξ−
ξ20

· |s2|
2

|s1|2
=

4|I(+,+)||I(+,−)|
|I(+, 0)|2

(60)

Taking the entire MSE-spectrum into account only leads to small deviations of the error assump-

tion and the spectral contrast functions whereas the fundamental principle of data evaluation

remains. The response of the IMSE-system to the MSE-spectrum was well proven in numeric sim-

ulations and experiments on ADEX Upgrade and leads to errors in order of ∆θS ≈ 0.2 ◦. It still

remains the question of an in-situ calibration method to improve and simplify the measurement.

In the next chapter the response of the IMSE-system to the Zeeman-emission is described with

the aim to discuss the possibility of calibration theoretically and independently of installation

on a special fusion device.
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6 Theoretical description of the IMSE-system measuring the Zee-

man multiplett

Since experiments have shown a measurable signal of the IMSE-system observing Zeeman split

Hα-emission from the plasma edge, the question emerges if this can be used to calibrate or

improve the IMSE-measurement. For a discussion of this, the following chapter will introduce a

general theoretical description of the response of the IMSE-system to Zeeman-emission based in

the same way of calculation as in the former chapter. The main di�erences are caused by the

existence of non vanishing circular polarisation for the two σ±-components and a MUCH smaller

energy splitting the for the MSE-spectrum. The �rst section will give a theoretical description

of the IMSE-system measuring Zeeman-emission. It is followed a discussion if the IMSE-system

in contemporary con�guration (i.e. with regard to used optical plates) is suitable for calibration.

The last section investigates possibilities to optimise the IMSE-system for Zeeman calibration

and MSE-measurements at the same time by changing the intrinsic system parameters.

6.1 Derivation of equations for data evaluation

In the former calculation for the MSE multiplett the Stokes vectors of the π±-components are

identical (sπ
−

= sπ
+
). This symmetry breaks for the σ±-components of the Zeeman multi-

plett due to di�erent signs of the non-vanishing ellipticity ∓χ leading to new terms in the total

image-equation. Ignoring line-broadening e�ects, a complete description of IMSE-systems re-

sponse to the Zeeman multiplett is possible, since the Zeeman multiplett only consists of three

components in strong magnetic �elds like in ASDEX Upgrade. The frequencies of the three

Zeeman components are de�ned as ωπ = ω0 and ωσ
±

= ω0 ± ∆ω. The polarisation angle

for the linear π-component is de�ned relative to the Savart plate as θS . The major polari-

sation axis of the elliptical σ±-components is orthogonal to the polarisation direction of the

π-component and therefore has polarisation angle θS + 90◦ and the ellipticity ∓χ. Since the

ellipticity varies with observation direction characterised by the angle γ relative to the mag-

netic �eld, the following notation of the Stokes vectors with the Stokes parameters (s1, s2, s3) =

(sin2(γ) cos(2θS), sin2(γ) sin(2θS), 2 cos γ) is used in this calculation:

sπ = Iπ


sin2(γ)

s1

s2

0

 sσ
±

= Iσ
±


1 + cos2(γ)

−s1
−s2
∓s3

 (61)

The derivation of the corresponding geometry was already explained in section 4.2 and is de-

scribed explicitly in [21]. To consider the possibility of �lter e�ects and non-statistical state

population the calculation starts from arbitrary intensity values Iπ, Iσ
+
and Iσ

−
. The in�uence

of such e�ects is minor interest for a general discussion but important for a full simulation in the

next chapter. In general total intensity values are insigni�cant and only the ratios of this three

values is important. In ideal case of statistical state population and for a �lter with constant

transmittance over the Zeeman-multiplett, this ratio is �xed to 2Iσ
±

= Iπ.
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For the MSE calculation the stokes vectors behind the FLC-plate were inserted to the image

equation. Proceeding in the same way for the Zeeman multiplett leads to the following ansatz

for the entire image equation, where for clarity x̂ = cβx+ cγ and ŷ = cαy are de�ned.:

2IZeemanImage = 2I(ŝπ, ω0) + 2I(ŝσ
−
, ω0 −∆ω) + 2I(ŝσ

+
, ω0 + ∆ω) (62)

= ŝπ0 + ŝσ
+

0 + ŝσ
−

0

+Iπ ŝπ1 cos(ω0x̂) + (Iσ
+

ŝσ
+

1 + Iσ
−
ŝσ

−
1 ) cos(∆ωx̂)cos(ω0x̂) − (Iσ

+

ŝσ
+

1 − Iσ
−
ŝσ

−
1 ) sin(∆ωx̂)sin(ω0x̂)

+
1

2

(
Iπ ŝπ2 + (Iσ

+

ŝσ
+

2 + Iσ
−
ŝσ

−
2 ) cos(∆ω(x̂ + ŷ)) + (Iσ

+

ŝσ
+

3 − Iσ
−
ŝσ

−
3 ) sin(∆ω(x̂ + ŷ))

)
cos(ω0(x̂ + ŷ))

−1

2

(
Iπ ŝπ2 + (Iσ

+

ŝσ
+

2 + Iσ
−
ŝσ

−
2 ) cos(∆ω(x̂− ŷ)) − (Iσ

+

ŝσ
+

3 − Iσ
−
ŝσ

−
3 ) sin(∆ω(x̂− ŷ))

)
cos(ω0(x̂− ŷ))

+
1

2

(
Iπ ŝπ3 + (Iσ

+

ŝσ
+

3 + Iσ
−
ŝσ

−
3 ) cos(∆ω(x̂ + ŷ)) − (Iσ

+

ŝσ
+

2 − Iσ
−
ŝσ

−
2 ) sin(∆ω(x̂ + ŷ))

)
sin(ω0(x̂ + ŷ))

+
1

2

(
Iπ ŝπ3 + (Iσ

+

ŝσ
+

3 + Iσ
−
ŝσ

−
3 ) cos(∆ω(x̂− ŷ)) + (Iσ

+

ŝσ
+

2 − Iσ
−
ŝσ

−
2 ) sin(∆ω(x̂− ŷ))

)
sin(ω0(x̂− ŷ))

Theoretical description for the IMSE-system to measure the polarisation angle θS

For the single wavelength and the MSE case the image equation was rearranged and afterwards

the di�erent modes of the FLC-plate were investigated. This strategy is complicated for the

Zeeman-Multiplett due to the symmetry break. Assuming the FLC-plate is replaced from the

IMSE-system, the components from the stokes vectors can be replaced (ŝπ2 = sπ2 and ŝσ
±

2 = sσ
±

2 ).

With some mathematically e�ort it is possible to show, that the FLC-O� case would lead to

the same conclusions at the end, which is skipped here for clarity, but the FLC-On case will be

discussed later in this section. Inserting the Stokes vectors as de�ned in (61) the image equation

can be rewritten as:

2IZeeman = Iπ sin2(γ) + (Iσ
+

+ Iσ
−

) · (1 + cos2(γ))

+ s1ξ0cos(ω0x̂) + s1κ
S
0 sin(ω0x̂)

+
1

2
(s2ξ+ − s3η+) cos(ω0(x̂+ ŷ))

− 1

2
(s2ξ− + s3η−) cos(ω0(x̂− ŷ)) (63)

− 1

2

(
s3κ

c
+ − s2κs+

)
sin(ω0(x̂+ ŷ))

− 1

2

(
s3κ

c
− + s2κ

s
−
)
sin(ω0(x̂− ŷ))

In this equation the factors ξ0, ξ+ and ξ− are analogous to the MSE case im equation (55) the

spectral contrast functions for the linear part of the Zeeman polarisation, whereas the new factors

η0, η+ and η− denote spectral contrast for the circular polarised part. Since the π-component is

always linear polarised, no η0 occurs in the image equation for the Zeeman emission. The spectral

functions are mainly in�uenced by the frequency splitting ∆ω and the system parameter cγ , which

is included in x̂.
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The spectral functions for the linear and circular polarisation are de�ned as follows:

ξZ0 = Iπ − (Iσ
+

+ Iσ
−

)cos(∆ωx̂)

ξZ± = Iπ − (Iσ
+

+ Iσ
−

)cos(∆ω(x̂± ŷ)) (64)

η0 = (Iσ
+

+ Iσ
−

)sin(∆ωx̂)

η± = (Iσ
+

+ Iσ
−

)sin(∆ω(x̂± ŷ))

The factors κ0, κc± and κs± image equation (38) occur as a result of di�erent intensities for

the σ±-components, e.g if �lter are used. If no unexpected e�ect causes a asymmetry of the

intensities, these �ve factors become zero for an ideal �lter. In this thesis they are denoted as

�lter factors and are de�ned by the following equations:

κS0 = (Iσ
+ − Iσ−

)sin(∆ωx̂)

κC± = (Iσ
+ − Iσ−

)cos(∆ω(x̂± ŷ)) (65)

κS± = (Iσ
+ − Iσ−

)sin(∆ω(x̂± ŷ))

For the Zeeman-multiplett the di�erent Fourier components can be demodulated by using the

two-dimensional Fourier transform and the corresponding inverse Fourier transform, which is the

same procedure as for the MSE multiplett. The exponential terms of the Fourier components

are only changed by the smaller frequency splitting in comparison to the MSE, so again seven

Fourier components are given in the Fourier picture calculated from the interference pattern,

which was measured by the CCD camera. The Fourier components are given by:

I(0, 0) =
1

2
(Iπ sin2(γ) + (Iσ

+
+ Iσ

−
) · (1 + cos2(γ))

I(±, 0) =
1

4
sZ1 (ξ0 ∓ iκS0 )e±iωx̂ (66)

I(±,±) =
1

8
((s2ξ+ − s3η+)∓ i(s2κS+ − s3κC+))e±iω(x̂+ŷ)

I(±,∓) = −1

8
((s2ξ− + s3η−)∓ i(s2κS− + s3κ

C
−))e±iω(x̂−ŷ)

If the �lter functions are zero, because an ideal �lter was used, the factors in front of the

exponential term become real values. Again, it is possible to calculate the amplitudes of the

Fourier components. This results in following equations for the amplitudes:

|I(0, 0)| =
1

2
|(Iπ sin2(γ) + (Iσ

+
+ Iσ

−
) · (1 + cos2(γ))|

|I(±, 0)| =
1

4
|s1|
√

(ξ0)2 + (κS0 )2 (67)

|I(±,±)| =
1

8

√
(s2ξ+ − s3η+)2 + (s2κS+ − s3κC+)2

|I(±,∓)| =
1

8

√
(s2ξ− + s3η−)2 + (s2κS− + s3κC−)2

The corresponding complete amplitudes consists of a square root over two terms. The �rst term

contains the stokes vectors weighted with the linear and circular spectral functions, whereas the
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second term describes the in�uence of intensity asymmetry in the σ±-components. For the Zee-

man emission the antisymmetric ellipticity introduces a di�erence between the amplitude of the

symmetric Fourier components |I(±.±)| and the antisymmetric Fourier components |(I±,∓)|
due to di�erent signs in the �rst term. Assuming the κ-factors to be small by using an approx-

imately ideal �lter the total intensity symmetry of the σ±-components leads to the following

simpli�cation of the Fourier amplitudes:

|I(0, 0)| =
1

2
|(Iπ sin2(γ) + (Iσ

+
+ Iσ

+
) · (1 + cos2(γ))|

|I(±, 0)| =
1

4
|sZ1 ||ξZ0 | (68)

|I(±,±)| =
1

8
|s2ξ+ − s3η+|

|I(±,∓)| =
1

8
|s2ξ− + s3η−|

For γ ≈ 90◦ (i.e. vanishing ellipticity for the σ±-components) the Fourier amplitudes show

a periodicity in θS with 90◦. This is the same as for the MSE measurement, since the MSE

multiplett in fully linear polarised. For smaller values of γ, this symmetry breaks for |I(±,±)|

and |I(±,∓)| and the periodicity of these amplitudes are only in 180◦ of θS . The corresponding

illustration is given in Figure 24.

Figure 24 � Fourier amplitudes dependent on the polarisation angle θS for di�erent values of γ.

In the limiting case of small ellipticity for the σ±-components (s3 ≈ 0) or if the delay plate

thickness is optimised to the Zeeman splitting (η+, η− ≈ 0), the relations analogue as for the

MSE case in (59) or (60) may be used to achieve su�ciently accurate results for the polarisation

angle. This will be investigated in detail later in this chapter. For the general case of non-

negligible ellipticity, the equations (59) or (60) can lead to a large error. For this reason a new

equation must be found for data evaluation of the polarisation angle in the Zeeman case.

Taking the absolute value to get the amplitude is the standard method during data evaluation

and leads to the loose of the sign information of τ = s2ξ+ − s3η+. This has no physical reason
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and is only a mathematically artefact. Therefore, a analysis is needed to �nd a new evaluation

equation. Assuming ξ± ≈ ξ0 and η± ≈ η0, the following cases must be di�erentiated:

1. s2ξ0 ≤ s3η0: This case is given if the circular polarisation has a strong in�uence and the

spectral function for circular polarisation η0 is strong against the spectral function for linear

polarisation ξ0. In this case the amplitudes can be written as follows:

|I(±,±)| = 1

8
(s3ξ0 − s2η0) and |I(±,∓)| = 1

8
(s3ξ0 + s2η0)

The polarisation angle can now be obtained by following equation:

tan 2θS =
s2
s1
≈ |I(+,−)| − |I(+,+)|

|I(+, 0)|
(69)

2. s2ξ0 > s3η0: This case is valid for small weighted ellipticity and the amplitudes can be

written as follows:

|I(±,±)| = 1

8
(s2ξ0 − s3η0) and |I(±,∓)| = 1

8
(s2ξ0 + s3η0)

The polarisation angle can the be calculated by the following relation:

tan 2θS =
s2
s1
≈ |I(+,−)|+ |I(+,+)|

|I(+, 0)|
(70)

Since ξ0, ξ+ and ξ− as well as η0, η+ and η− are slightly di�erent in y, the error of θS is assumed

to be a function of y and to become small for the center of the picture (y −→ 0).

Derivation of the IMSE-response with activated FLC-plate

Before the new equations are discussed more in detail for the current setup of the IMSE-system

and with the aim to realise calibration, the in�uence of the interlaced FLC-plate will be in-

vestigated. Starting from the complete image equation (62) the calculation for the interlaced

FLC-plate (ŝ1 = −s3 and ŝ3 = s1) can be performed the same way as in the former section. The

resulting image equation for the interlaced FLC-plate is given as follows:

2IZeemanImage = Iπ sin2(γ) + (Iσ
+

+ Iσ
+

) · (1 + cos2(γ))

+ s3κ
S
0 cos(ω0x̂)− s3η0sin(ω0x̂)

+
1

2

(
s2ξ

Z
+ − s1κs+

)
cos(ω0(x̂+ ŷ))

− 1

2

(
s2ξ

Z
− + s1κ

s
−
)
cos(ω0(x̂− ŷ)) (71)

+
1

2

(
s1ξ

Z
+ + s2κ

s
+

)
sin(ω0(x̂+ ŷ))

+
1

2

(
s1ξ

Z
− − s2κs−

)
sin(ω0(x̂− ŷ))
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The Fourier components and the corresponding amplitudes can then be calculated as follows:

I(0, 0) =
1

2
(Iπ sin2(γ) + (Iσ

+
+ Iσ

+
) · (1 + cos2(γ))

I(±, 0) =
1

4
s3(κ

S
0 ∓ iη0)e±iωx̂ (72)

I(±,±) =
1

8
((s2ξ+ − s1κS+)∓ i(s1ξ+ + s2κ

S
+))e±iω(x̂+ŷ)

I(±,∓) = −1

8
((s2ξ− − s1κS−)± i(s1ξ− + s2κ

S
−))e±iω(x̂−ŷ)

|I(0, 0)| =
1

2
|(Iπ sin2(γ) + (Iσ

+
+ Iσ

+
) · (1 + cos2(γ))|

|I(±, 0)| =
1

4
|s3|
√

(κS0 )2 + (η0)2 (73)

|I(±,±)| =
1

8

√
(s2ξ+ − s1κS+)2 + (s1ξ+ + s2κS+)2

|I(±,∓)| =
1

8

√
(s2ξ− − s1κS−)2 + (s1ξ− + s2κS−)2

The amplitudes of the Fourier components for the interlaced FLC-plate are di�erent from the

former case. The amplitudes |I(±, 0)| are independent of s1 or s2 and therefore also indepen-

dent of the polarisation angle θS . The amplitudes |I(±,±)| and |I(±,∓)| are not e�ected by

a spectral contrast function for circular polarisation η− and η+, but |I(±, 0)| are in�uenced by η0.

If the �lter factors are vanish the amplitudes simplify to following equations:

|I(0, 0)| =
1

2
|(Iπ sin2(γ) + (Iσ

+
+ Iσ

+
) · (1 + cos2(γ))|

|I(±, 0)| =
1

4
|sZ3 ||η0| =

1

4
|η0||2 cos(γ)| (74)

|I(±,±)| =
1

8
|ξ+|

√
(sZ1 )2 + (sZ1 )2 =

1

8
|ξ+|| sin2(γ)|

|I(±,∓)| =
1

8
|ξ−|

√
(sZ1 )2 + (sZ1 )2 =

1

8
|ξ−|| sin2(γ)|

All Fourier amplitudes are independent of the polarisation angle θS . The same statement is

valid for the MSE measurement, where the FLC-plate can be used to measure small ellipticity

e�ects of the MSE components. In general, the absolute intensity of the Fourier amplitudes is

unknown, which makes a division of the amplitudes necessary to eliminate the absolute intensity.

The relation between the Fourier amplitudes and the ellipticity χ of the σ±-components are given

by equation (75).

tan(2χ) =
2 cos(γ)

sin(γ)2
= ε

2|I(±, 0)|
|I(±,±)|

(75)

The ratio of the spectral functions ε = |ξ+|/|η0| in equation (75) depends on the system con-

�guration. Theoretically the factor can be roughly estimated from the energy splitting and the

thickness of the delay plate. Small changes of this factor e�ect the amplitudes strong enough
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to make accurate measurement of the ellipticity for the Zeeman-emission impractical. Figure 25

illustrates the amplitudes as a function of γ for di�erent values of ε.

Figure 25 � Dependence of the Fourier amplitudes for γ variation and di�erent values of ε.

6.2 Theoretical analysis of the current IMSE-system measuring Zeeman-

emission

In this section the response of the IMSE-diagnostic to Zeeman-emission for contemporary system

con�guration will be investigated. This means, that the delay plate has a thickness LW = 1.2 mm

leading to a value for the system parameter cγ ≈ 1.5 · 10−12 sm−1. All other system parameters

are the same a introduces in section 5.2. The following discussion is focused on the dependence

of the systems response to the polarisation angle θS , viewing angle γ and the pixel position x

and y on the CCD-camera. The value of the magnetic �eld strength is therefore also assumed

to have a �x value of | ~B| = 2 T, which is a realistic order of magnitude for ASDEX Upgrade.

This leads also to a �xed value for the Zeeman splitting of ∆λ ≈ 0.04 nm. For this condition

the values of the spectral functions only changing across the image due to change of x and y.

For x = 0 mm and y = ymax = 3.17 mm (i.e. a position at the edge of the picture at the

CCD-camere), the spectral functions depends on the system coe�cient cγ as shown in Figure

26. The value of cγ for the current IMSE-system is marked by the black dashed line. Changes

in x would only lead to a small deviation of the spectral functions, which is not important for

the following discussion. The value of y was chosen to be maximal to illustrate the maximal

di�erence between the several spectral functions, since for y = 0 mm the relations η± = η0 and

ξ± = ξ0 are valid. Figure 26 shows, that for the current con�guration (black dashed line) of the

IMSE-system η0 � ξ0. This means that the circular polarised part of the Zeeman emission is

weighted very strong by the system in comparison to the linear part, which contains the relevant

information about the polarisation angle. For a reasonable measurement or calibration this ratio

of the spectral functions in therefore problematic. To improve the spectral function ratio a op-

timisation by changing system parameters is possible. This will be discussed later in this chapter.
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Figure 26 � Spectral functions for di�erent values of the system coe�cient cγ . The black dashed line
illustrates the current value of the system (i.e. with the delay plate used for the MSE measurement).

In the next step it is necessary to consider which of equation (69) or (70) is valid to obtain

the polarisation angle θS for the given system con�guration. Figure 27 shows the value of the

term τ = s3η0 − s2ξ0 as a function of the polarisation angle θS and the viewing angle γ, since

the sign of τ can be seen as the determining criteria.

Figure 27 � Value of the parameter τ for the current IMSE-system con�guration in dependence of
the polarisation angle θS and angle γ . The value determines if equation (69) or (70) must be used
for data evaluation.

47



If τ is positive, equation (69) must be used, whereas for a negative value of τ equation (70) is

relevant. The results in Figure 27 show, that equation (69) will give the correct θS for all γ ≤ 87◦.

Only for γ > 87◦, which means nearly vanishing circular polarisation for the σ-components, the

other equation is useful. Since η0 is large against ξ0, equation (69) is expected to give better re-

sults than using the equations (59) and (60) as for the MSE-case. Those equations (59) and (60)

will only lead to su�ciently accurate results, if the σ-components are entirely linear polarised.

The dependence of the sign of τ from γ and the ratio of the spectral functions is problematic

for measurements, since it determines the data evaluation and can only be estimated for a �xed

system con�guration.

To investigate the accuracy of θS calculated from measured data by equation (69) in depen-

dence of x, y and γ, short numerical calculations are useful. For this θExact is de�ned as true

value for the polarisation angle. It is used to calculate Stokes vectors and Fourier components.

From the Fourier components θResult is then calculated with (69) and represents the measured

value in this simple simulation. This model ignores errors introduced by the real demodulation

process with two-dimensional Fourier transform and from noise in the measured data, but is use-

ful to understand the intrinsic in�uence of di�erent parameter for the measurement. These other

e�ects will be considered in the next chapter dealing with a full simulation of the IMSE-system

measuring the Zeeman-edge emission at ASDEX Upgrade. If equation (69) does not introduce

an error, the relation between θExact and θResult is as presented in Figure 28. The value of θResult
is only de�ned in the interval [0◦, 45◦], since the arctangent of a positive amplitude is used for

data evaluation. For the real measurement or a calibration with the IMSE-system this ambigu-

ity does not cause a problem, since the orientation of the polarisation can be roughly estimated

geometrically. For the MSE measurement deviations from this ideal case are periodic with 90◦

due to the periodicity of the amplitudes. For the Zeeman emission the periodicity of both is for

180◦.

Figure 28 � Dependence between real polarisation angle θExact and measured polarisation angle
θResult for an ideal measurement with vanishing error.
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For following theoretical calculation, the viewing angle γ is varied over the full range of possible

values, whereas three di�erent values for y are selected with ymax = 3.17 mm characterising the

edge of the image. Since changing x will not in�uence the results here, the value is �xed to

x = 0. The results are illustrated in Figure 29.

Figure 29 � Simulated measurement value for the polarisation angle θResult in dependence of the
exact input value θExact and the observation angle γ for di�erent values of y. The simulated values
are valid for the current con�guration of the IMSE-system.
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In the case of small γ, which means viewing direction nearly parallel to the magnetic �eld or

nearly full circular polarisation of the σ±-components, the information about the polarisation

angle θs is entirely lost in all cases. This e�ect is enhanced by the high weighing of circular po-

larisation against the linear parts induced by the spectral functions. For γ ≤ 87◦ the calculation

with equation (69) gives wrong results as explained is the former section. In this range (70) is

needed. The results show, that with increasing y the calculated value for θS become useless.

This e�ect is strong and only for very small y the accuracy is su�cient. For smaller values of γ,

the deviations between the exact and the calculated value of the polarisation angle θS become

lager, which comes from the increasing ellipticity of the σ±-components with decreasing γ. All

this causes, that the reasonable data points are strictly restricted to a small area around y = 0

mm, which means for perpendicular incident angle (αI = 0◦) on the Savart plate. For the real

IMSE-system, it is not necessarily true that perpendicular incident is really given for the center

of the picture. A small deviation may exist due to setup accuracy. Secondly, for a reasonable

calibration a averaging about several data points is needed in real experiments to reduce noise

e�ects, which is avoided by the strong limitation of useful data points. In summary it can be said,

that the sensitivity of the measurement to the polarisation angle θS is low under contemporary

system conditions. Only for nearly perpendicular observation (γ = 90◦) the polarisation angle

can be measured well enough with using equation (70) during data evaluation. A reasonable

calibration with the aim of ∆θs < 0.05◦ by observing the Zeeman edge emission with the current

system con�guration is general not realisable, since total perpendicular observation is rarely the

case. For this reason a analysis will show later, if changing the intrinsic system parameter can

prepare the IMSE-system for a su�cient calibration of the system by measuring the Zeeman

edge emission for a wider range of observation angles γ. Before optimisation possibilities are

discussed the next section will illustrate in�uences of variations of the intensity ratios.

6.3 In�uence of non-statistic population of atomic states and �lter e�ects

In the former section the intensity ratios of the Zeeman emission were assumed to be ideal

with Iπ = 2Iσ
±
. This assumption is not valid it general, especially due to the �lter used to

select the Zeeman multiplett from backround emission. For the narrow frequency splitting of

the Zeeman emission, the transmittance over this small wavelength range increases or decreases

mostly monotonic. It can assumed that �lters therefore are introducing a asymmetry for the

intensity of the σ±-components, but not e�ect the intensity ration between the σ±- and the

π-component strongly. The following Figure 30 illustrates the results for two di�erent cases of

asymmetric intensity ratios for y = 0.1 ·ymax. This allows a comparison to the result from Figure

29 (middle part), where all other conditions are identically. In the of Figure 30 the intensity

values are Iπ = 1.0, Iσ
+
= 0.45 and Iσ

−
= 0.55 for the upper part and Iπ = 1.0, Iσ

+
= 0.40

and Iσ
−
= 0.60 in the lower part. Over the entire range of γ the intensity asymmetry causes a

additional deviation between θResult and θExact. The strength of this deviation increases with

increasing asymmetry. In comparison to the deviation introduced by γ, asymmetry e�ects are

in practice mostly small. Only for perpendicular observation (γ ≈ 45◦) the in�uence of the �lter

to the measurement become relevant. The total transmittance of used �lters is only important

for the signal strength, but has no in�uence here.
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Figure 30 � Simulated measurement value for the polarisation angle θResult in dependence of the
exact input value θExact and the observation angle γ for �xed y = 0.1 · ymax. The simulated values
are valid for the current con�guration of the IMSE-system. The following intensity ratios are used:
- Upper part: Iπ = 1.0, Iσ

+

= 0.45 and Iσ
−
= 0.55

- Lower part: Iπ = 1.0, Iσ
+

= 0.40 and Iσ
−
= 0.60

The second ratio, which can be in�uenced, is the ration between Iπ and Iσ = Iσ
+

+ Iσ
−
. In

general this can happen due to non-statistical population of the atomic states. Figure 31 shows

two di�erent cases for this scenario, where all other parameters are �xed as for the former

considerations. In both cases Iπ = 1.0, whereas Iσ = 0.9 in the upper and Iσ = 0.8 in the

lower case. The intensity of the σ±-components are symmetric (Iσ
+
= Iσ

−
). A smaller value for

Iσ/Iπ leads to an improvement of the measurement, since the in�uence of the perturbing circular

polarisation of the σ±-components decreases stronger relative to linear polarisation information,

which is also included in the π-component. That the area with useless results for high γ expands

to lower values is a e�ect of shifting values of τ . This means, that the range of γ, in which the

wrong data evaluation equation is used becomes wider. Data evaluation for the Zeeman emission

is especially complicated if τ is closed to zero, because which equation must be used can only

be estimated from theory. All cases in which τ has the same sign over the full range of γ and

θS are therefore non problematic. For real experiments non-statical state population are more
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important for MSE-measurements, since plasma edge hydrogen neutral are commonly follow a

statistical population. For neutral beam emission a non-statistical population of the atomic

states is possible [29, 30]. For only small deviations from this the e�ect to the measurement

is weak and can be neglected in general. From the last section it remains the problem, that

the IMSE-system in the current con�guration is gives inaccurate results. The next section will

introduce a possibility to optimise the system for the Zeeman emission and then discuss, how

e�cient such an optimisation is.

Figure 31 � Simulated measurement value for the polarisation angle θResult in dependence of the
exact input value θResult and the observation angle γ for �xed y = 0.1 · ymax. The simulated values
are valid for the current con�guration of the IMSE-system. The following intensity ratios are used:
- Upper part: Iπ = 1.0, Iσ

+

= 0.45 and Iσ
−
= 0.45

- Lower part: Iπ = 1.0, Iσ
+

= 0.40 and Iσ
−
= 0.40
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6.4 Optimisation of the IMSE-system for measuring Zeeman emission by

changing intrinsic system parameters

In the last section theoretical investigations have shown, that for the current IMSE-system a

reasonable calibration utilizing the Zeeman edge emission is impossible due to low sensitivity of

the system to the linear polarisation information of the Zeeman multiplett. The main reason

therefore is given by the unsuitable ratio of the spectral contrast functions ξ0 and η0. In this sec-

tion the spectral contrast functions will be optimised by changing the relevant system parameters.

Since the spectral functions in general depend on the values of x and y a entire optimisation for

all points on the CCD-camera is impossible. In the following section the system will be opti-

mised for x = 0 mm and y = 0 mm and afterwards the in�uence of di�erent pixel positions (i.e.

incident angles) will be investigated. The main deviations for the measured polarisation angle θS
are caused by the circular polarised part of the σ±-components. Since the polarisation states of

the Zeeman multiplett are �xed by the unchangeable viewing geometry, the only way to reduce

the in�uence of the perturbing circular polarisation is to minimize the absolute value of spectral

function for circular polarisation η0. For the same conditions the spectral function for the linear

polarisation ξ0 will be selected as high as possible. The relevant parameter for this optimisation

are the magnetic �eld strength | ~B| and the system parameter cγ . A rough range of 1.7 - 2.7 T

for the magnetic �eld strength is prede�ned by operation conditions of the fusion device. As

result cγ must be the variable parameter for optimisation. Since the refractive indices for the

plate material αBBO is �xed and the thickness of the displacer plate LD is not allowed to be

changed for accuracy of the measurement, only the delay plate thickness LW can be optimised

to Zeeman emission. Figure 32 shows in dependence of | ~B| and LW the parameter area, in which

η0 vanishes and ξ0 becomes maximal. Both requirements are ful�lled simultaneously, if cγ∆ω =

(2k − 1) · π, where k is positive natural number.

Figure 32 � Parameter area for optimisation of the spectral contrast functions ξ0 and η0 in depen-
dence of the magnetic �eld strength | ~B| and the thickness of the delay plate LW . The black dashed
line marks the delay plate thickness for the current diagnostic and the red dashed line the plate
thickness for optimisation to | ~B| = 2 T.
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According to Figure 32 a delay plate thickness of LW = 43 mm is required to optimise the

system for a magnetic �eld strength with | ~B| = 2 T. This large value is a result of the small

energy splitting from Zeeman e�ect in comparison with the MSE splitting range. The �gure 32

also illustrates a strong dependence between the strength magnetic �eld and the required delay

plate thickness, so for a 2.5 T the thickness must be only 32 mm. In conclusion the system

optimisation is only valid for a small range of the magnetic �eld strength | ~B|, which is prob-

lematic for calibration. The e�ect of small deviations from the optimised plate thickness will be

discussed later. The use of thick delay plates also decrease the absolute intensity and contrast

due to absorption and susceptibility to intrinsic crystal defects perturbing the measured signal.

For the optimised system with LW = 43 mm and | ~B| = 2 T it is necessary, to �nd the correct

evaluation equation. To investigate this, Figure 33 illustrates the value of τ in dependence of

the angles θS and γ.

Figure 33 � Value of the parameter τ for the theoretically optimised IMSE-system con�guration in
dependence of the polarisation angle θS and angle γ . The value determines if equation (69) or (70)
must be used for data evaluation.

Figure 33 shows that τ is mainly negative, which means that equation (70) must be used for

data evaluation. For small values of γ this equation will not give the correct value, but viewing

directions parallel to the magnetic �eld are general problematic cause of the high dominance of

circular polarisation. Analogous to the former case of the current IMSE-system con�guration an

identical plot as in Figure 29 is now shown in Figure 34 for the optimised IMSE-system. For

the optimised IMSE-system the error for the polarisation angle introduced by changes of y is

much smaller, so a larger area on the CCD-camera give accurate data for calibration and allow

a averaging about several data points for signal-to-noise optimisation. For γ over 30◦ the entire

CCD-picture is usable and only for small γ the information about polarisation angle θS is totally

lost.
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Figure 34 � Simulated measurement value for the polarisation angle θResult in dependence of the
exact input value θResult and the observation angle γ for di�erent values of y. The simulated values
are valid for the theoretically optimised con�guration of the IMSE-system.

Before the in�uence of magnetic �eld variation to the optimised IMSE-system is investigated,

the use of standard equation for data evaluation as for the MSE-multiplett can be proven, since

the circular polarisation is nearly full repressed due to optimisation by vanishing η0.
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For y = 0.1 · ymax the Figure 35 illustrates the data evaluation with equation (59) for the

upper part and with equation (60) for the lower part. For both equation used here the results

have the same high accuracy for γ > 20◦ as for the introduces equation (70) for the Zeeman

emission.

Figure 35 � Simulated measurement value for the polarisation angle θResult as a function of the exact
input value θExact and the observation angle γ. Polarisation angle θExact obtained with equation
(59) (upper part) and equation (60) (lower part).

It was already mentioned, that after the results in Figure 32 small deviations in the magnetic

�eld strength can change the spectral functions ξ0 and η0 strongly and therefore adjust the sys-

tem away from optimisation. To investigate this e�ect, small variations of the magnetic �eld

strength (| ~B| = 2.02 T and | ~B| = 1.95 T) were introduced to the theoretical calculation, whereas

y = 0.1 · ymax are assumed as �xed. The results are shown in Figure 36.

The results in Figure 36 illustrate, that small magnetic �eld changes are enough to decrease

accuracy of the measurement dramatically for γ < 45◦. For this condition optimisation of the

IMSE-system is general limited by a narrow range of magnetic �eld values, which was already

expected. Since the magnetic �eld varies spatial inside a tokamak and also for di�erent pulses,

a system optimisation as investigated in this section seems not to be a useful improvement.
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Figure 36 � Simulated measurement value for the polarisation angle θResult in dependence of the
exact input value θExact and the observation angle γ for di�erent values of the magnetic �eld strength
~B|. Polarisation angle θResult obtained with equation (70)d.

Again only for high values of γ the accuracy of the measurement is weakly a�ected, so that

for nearly perpendicular observation a real increase of the accuracy for the measured polar-

isation angles can be achieved. Under condition of nearly perpendicular observation relative

to the magnetic �eld direction a system optimisation might be useful. In general the system

optimisation will not make a calibration of the IMSE-system more realistic as for the current

IMSE-system. The general e�ect of �lters and non-statistical distribution are the same for the

optimised IMSE-system as for the current setup. Since the optimised system is strongly sensitive

to di�erent parameter changes, the e�ect of unsuitable �lter will be stronger for this case. The

main conclusions of the theoretical investigation in this chapter are shortly summarized at this

point:

1. In general for a wide range of observing angles the in�uence of the circular polarised

part of polarisation decreases the sensitivity of the measurement for the polarisation angle

strongly. Under this conditions accurate data are limited to a small area of the CCD, where
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the incident angle of the light wave is almost perpendicular. Since data evaluation requires

an averaging about several pixels to decrease noise perturbations, a su�cient measurement

for calibration can not be achieved.

2. For the IMSE-system with current system parameters the circular polarisation is strongly

weighted by the spectral contrast function of the system in comparison to the information

of the linear polarisation. This enhances the e�ect mentioned in point 1. A change of

the delay plate thickness in�uences the ratio of the spectral functions and can be used to

optimise the system by making the circular spectral function to vanish. The optimised

system gives theoretically accurate results for a wide range of γ and y. However, the

optimisation is only valid for a narrow interval of values for the magnetic �eld strength and

small deviations e�ect the measurement strong enough, that the accuracy is too small for

calibration. Only for small values of γ might a system optimisation be useful.

3. In general, the e�ect of small �lter asymmetry over the Zeeman-multiplett is low in com-

parison to the other in�uences mentioned before. The e�ect only becomes dominant for

the optimised IMSE-system and for nearly perpendicular observation. A decreasing of the

Iπ/Iσ ratio will not increase the error of the polarisation angle θS and is therefore of minor

interest.

4. A realistic chance of calibration of the IMSE-system at a tokamak is only given for vanishing

circular polarisation by nearly perpendicular observation. Under this condition a system

and �lter optimisation is useful to improve the accuracy of the measurement.
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7 Simulations for the IMSE - diagnostic installed on tokamak

ASDEX Upgrade

In the last chapter the general response of the IMSE-system to Zeeman Hα-emission was calcu-

lated and physically interpreted. This chapter investigates the response of the IMSE-system to

the Zeeman Hα-edge emission if it is installed at the MSE-port at ASDEX Upgrade. To compare

measured data with theoretical assumptions a forward model was written using the open source

coding language Python. The last chapter has shown, that the polarisation angle can not be

extracted accurately enough for calibration. A forward model is an alternative way to realise

calibration, if a �tting of the simulates data to the measured data is possible. The following

chapter starts with an overview of the main input data for the simulation. Afterwards the basic

program structure is introduced with regard to the approximations used. A discussion of the

main simulations results follows, which are interpreted in comparison to measured data.

7.1 Input data for simulation

Magnetic �eld data from static equilibrium

To simulate the stokes vectors of the Zeeman emission from the plasma edge, the direction of

the magnetic �eld is needed. The data of the magnetic �eld are obtained from the CLISTE

equilibrium code (CompLete Interpretive Suite for Tokamak Equilibria) [31]. The CLISTE-code

solves the Grad-Shafranov equation (14) numerically to �nd a su�cient poloidal �ux function

Ψ(R, z) for each pulse in ASDEX Upgrade during data evaluation. The following Grad-Shafranov

equation was already introduced in section 1.3:

R
∂

∂R

(
1

R

∂Ψ

∂R

)
+
∂2Ψ

∂Z2
= −µ0R2 dp

dΨ
− 1

2

d(RBφ)2

dΨ
(76)

To solve this equation the total derivations of the pressure and the toroidal �eld on the right side

are linearised by the two �xed functions Λ, Υ dependent on Ψ. They are also basis functions for

the toroidal �eld current jφ. The parametrisation is then given by:

∂p

∂Ψ
= ΣiciΥi(Ψ)

∂Bφ
∂Ψ

= ΣikiΛi(Ψ) (77)

Based on the currents in the poloidal �eld coils and a �xed in-vessel structure the code calculates

a toroidal current density pro�le for jφ by setting the parameters ci and ki. The current density

is compared to measured data from external magnetic �eld diagnostics. The iterative code varies

the parameter ci and ki to optimise the �t of jφ between measured data and code results by

minimise the least square error. The Code also outputs other parameters like the magnetic

�eld ~B(R,φ, Z) for the calculated equilibrium. The given results are especially accurate for

the outer plasma edge, where the measured boundary conditions for the code are well known.

An example for such a two-dimensional poloidal �ux function is illustrated in Figure 37. Here

ΨNorm.(R,Z) is the normalised �ux function where ΨNorm.(R,Z) = 0.0 denotes the magnetic

axis and ΨNorm.(R,Z) = 1.0 the last closed �ux surface determined by the separatrix inside the

vessel.
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Figure 37 � Exemplary structure of the normalised two-dimensional �ux surfaces ΨNorm.(R,Z)
at ASDEX Upgrade calculated by the equilibrium code CLISTE for limiter con�guration (left) and
seperatix con�guration (right)

Viewing geometry of the camera

The second data set needed for simulation is the viewing direction of the IMSE-system relative

to the magnetic �eld. Since the IMSE-system is mounted at the MSE-optics, the emission passes

through di�erent optics before it is measured by the IMSE-system (Figure 9). All these optics,

especially the mirror and the protection cover, in�uence the polarisation angle, which means

that there is a di�erence between the global de�ned polarisation angle for the tokamak and the

polarisation angle measured by the IMSE-system. The program will calculate the polarisation

angle �rst for the global tokamak frame and the in�uence of the MSE optics is added afterwards.

Therefore, each pixel on the camera, where i and j is the pixel-number in x-direction and y-

direction, can be related to a viewing vector ~υij pointing from the surface of the mirror into

the plasma vessel. To measure the vectors ~υij , a normal picture was taken with the CCD-

camera at the end o� the MSE-optics. In-vessel components, which are accurately identi�able

on this calibration picture, serve as �xed markers and their coordinates inside the tokamak were

measured geometrically. Together with the re�ection point of the image on the mirror ~xO, which

is approximately assumed to be the same point for all pixels, the viewing vectors were calculated

and the remaining viewing vectors were interpolated. Figure 38 shows the calibration pictures.

The left part shows a photo with the marked calibration points. These are the same points

observed with the IMSE-diagnostic through the MSE optics in the right picture. A geometric

calculation of the intersection points of the viewing lines and the neutral beam also allows a

rough of the absolute polarisation direction. However, this is not nearly accurate enough for the

IMSE, so a new way of calibration is required, which can be done in-situ during operation and

has a higher accuracy.
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Figure 38 � Photo with marked calibration points at the vessel surface (left) and picture taken with
the CCD-camera through the MSE-optics with identical calibration points (right).

Intensity distribution of the Hα-Zeeman-edge emission

For a complete simulation, the intensity distribution and the position of the Zeeman Hα-edge

emission must be known. In principle, the absolute intensity is not important for the measure-

ment, because it will be eliminated during data evaluation, but since the IMSE-system measures

the polarisation line integrated along each viewing direction, the measured polarisation angle

depends on the three-dimensional intensity distribution. For the standard measurement with

the IMSE-system, the source of emission is well localised, since the neutral beam position is

known. In contrast to the beam emission, the position of the Zeeman Hα-edge emission changes

during the ramp-up phase as shown in Figure 39. Only for the case, where the emission is

strongly localised near the limiter (upper right part in Figure 39), an intensity distribution can

be roughly decided. For the other cases several other measurements are needed to �nd a su�cient

three-dimensional intensity distribution, since the line integrated data from the IMSE-system do

not include information about the intensity distribution in the third dimension. For this reason

the simulation and measurements in this thesis are focused on data, where the emission is lo-

calised at the limiter. In zero order the intensity distribution can assumed as a thin layer at the

plasma edge, which means that the emission is represented by only one point for each viewing

line with similar value of ΨNorm.(R,Z). The next order is an exponential decay of the emission

in direction of decreasing ΨNorm.(R,Z) due to reionisation of the recycled hydrogen neutrals. In

principle, the intensity distribution on a �xed �ux surface is not important, because their is no

line integration in this direction and the total intensity distribution over the measured picture is

irrelevant for the measurement. Nevertheless, it is possible to model a full intensity distribution

for the limiter case using Gaussian and linear functions for a �xed �ux surface. The program

includes these di�erent intensity models, where several variable parameters e.g. for the number

of points per viewing direction and for the slope of the exponential decay. For a very narrow

thin layer or a very strong exponential decay, the changes of the polarisation angle along the line

of sigh are very small, so only for high accuracy e.g. for a calibration, the intensity distribution

must be accurately known. For a rough physical simulation, this is not of high importance. The

viewing lines also intersect with the plasma edge a second time directly in front of the mirror.
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Especially for the limiter case, it can be assumed that the in�uence of possible Zeeman-emission

from this position is small against the strong intensity from near the limiter. Therefore, it is

totally neglected in the simulation.

Figure 39 � IMSE-images of the Zeeman-emission in chronological order with changing intensity
distribution during the current ramp up.

Value of the energy splitting by the Zeeman-e�ect

Since the neutral particles, which emits the Hα-light, are concentrated in a thin plasma edge

layer near the limiter, the magnetic �eld strength is assumed to be constant at all coordinate

points along the viewing direction. The constant value | ~B| and therefore the �xed frequency

splitting are estimated for each pulse.

7.2 Program structure

In this section the main calculation steps of the code are shortly described. To each pixel on the

CCD-camera belongs an integral over the intensity weighted stokes vectors along each viewing

line ~υij . For a numerical simulation discretisation is necessary, so the integral is replaced by

a sum over intensity weighted stokes vectors on �xed points ~xkij = (xkij , y
k
ij , z

k
ij), where k is the

number of points per viewing line.

~stotij =

∫
~s I d~vij = Σk ~s(~x

k
ij) I(~xkij) (78)
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These de�ne a three-dimensional grid, where I(~xkij) denotes the modelled intensity distribution

and ~s(~xkij) is the Stokes vector at each point of the grid. It is convenient and physically reasonable

to choose these discretesation points in such a way, that they belong to constant di�erences of

Ψ (i.e. Ψ(~xkij) − Ψ(~xk−1ij ) = constant). To calculate the discrete grid the code uses linear and

bilinear interpolation. In the �rst step a set of points for each viewing line obtained by linear

parametrisation of each viewing direction as represented by following equation.

~xmij = ~xO +m ~vij (79)

Then the poloidal �ux function is calculated on each of these points ~xmij using bilinear inter-

polation with the �ux surface data from CLISTE. Therefore, the points on the viewing lines

are transformed from the Cartesian to the cylindrical coordinate system. Afterwards a set of

�xed values of Ψ(~xkij) is chosen. The corresponding new grid points ~xkij at each viewing line are

obtained with linear spline interpolation, which is done for each of three coordinates and each

viewing line separately. The accuracy of the new grid is su�cient enough for a basic physical in-

vestigation. In a last interpolation step the magnetic �eld direction ~B(R,φ, Z) on each new grid

point ~xkij is calculated with linear spline interpolation for each coordinate separately. Since the

change of the magnetic �eld direction between neighbouring points is small, the resulting mag-

netic �eld vectors are accurate enough. Afterwards the new grid points and the magnetic �eld

directions at these are transformed back to Cartesian coordinates using the following relation for

the magnetic �eld vectors:

Bx = BR cos(φ)−Bφ sin(φ)

By = BR sin(φ)−Bφ cos(φ) (80)

Bz = BZ

In the Cartesian system the global polarisation angle β and the the direction angle γ can be

calculated. As explained in section 4.2 the de�nition of the polarisation angle requires a de�ned

coordinate system for each viewing direction. Starting from the global z-direction ~zG = (0, 0, 1)

in the tokamak frame, the three-dimensional cartesian coordinate system is generated for each

viewing direction by the normalised vectors ~vij ,~lAij und ~l
B
ij . These are obtained by using following

relations:

~lAij =
~eAij

|~eAij |
with ~eAij = ~vij × ~zG (81)

~lBij =
~eBij

|~eBij |
with ~eBij = ~vij ×~lAij (82)

In this de�nition the vector ~eBij is the vector perpendicular to the line of sight that is closest to

the vertical direction ~zG = (0, 0, 1) in the global tokamak frame. The angles γkij and β
k
ij at each

grid point are then given by the following equation, where ~Bk
ij = ~B(~xkij) is the magnetic �eld on

the grid.

cos(γkij) =
~Bk
ij · ~vij
| ~Bk

ij |
and tan(βkij) =

~Bk
ij ·~lAij
~Bk
ij ·~lBij

(83)
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The Stokes vector at each point can be calculated directly from these angles using (??). Af-

terwards, the Stokes vectors are weighted by the intensity distribution and are added for each

viewing direction according to equation (78), which leads to the global total Stokes vector for

each pixel on the image stot. From the global total Stokes vector, the line integrated polarisation

angle βtot and the line integrated value of γtot across the picture can be obtained, which represent

the measurable polarisation state of the π-component.

Until now the programme only calculates the global polarisation angle βtot. The polarisation

angle the IMSE-system at the end of the MSE-diagnostic measured is denoted as θtotS , which is

the polarisation angle of the π-component relative to the Savart plate. The di�erence between

both frames of polarisation can be split in two terms as follows:

θtotS = βtot + ∆βF + ∆βM+C (84)

The both term will be explained more in detail now:

1. The term ∆βF describes the in�uence of the Faraday e�ect, which e�ects the polarisation

angle of the light passing through the protection cover in the vessel wall. The Faraday

e�ect always rotates the polarisation direction of polarised light, if the light is passing

through a dielectric medium with magnetic �eld component parallel to the propagation

direction inside. ∆βF is di�erent for each viewing direction and depends on the magnetic

�eld strength, the length of the lights path through the media and the Verdet constant.

The Verdet constant depends on the dielectric media and the wavelength of the light. The

data used in the program are extracted from a ray trace program [27] that describes the

polarisation state of the light passing through the entire MSE-optics. Measured data for

the Faraday rotation in the protection cover have shown a accurate agreement with these

calculated values. The changes of the polarisation angle through the Faraday are smaller

then 1◦ [11].

2. The term ∆βM+C is the main geometric term e�ecting the polarisation angle and depends

on the in�uence of the re�ection of the polarised light at the dielectric mirror and the

rotation of the birefringent plates around the optical axis of the MSE-optics. The value of

∆βM+C is also di�erent for each viewing line, since the de�nition frame (~lAij and ~l
B
ij) for

each pixel is di�erent. It can be estimated from comparison with the ray trace program.

Therefore, several reference vectors were de�ned in the global tokamak frame and are pro-

jected in the polarisation plane orthogonal to the viewing vector. The ray tracer calculates

the transformation of the projected reference vectors to the frame of the Savart plate. The

comparison of the reference vectors in both frames allows the geometrical calculation of

the values for ∆βM+C . The quantity ∆βM+C is the desired parameter for calibration by

�tting the simulated data to measurement results.

The angle γtot should not be in�uenced when the polarised light passes the MSE-optics, since

Faraday rotation does not e�ect circular polarisation. The used special dielectric mirror is as-

sumed not to change the ratio of linear and circular polarised light, since it the dielectric mirror

is optimised to have total re�ectance for the parallel and the perpendicular component of the

incident wave for the used wavelength range.

64



With the angles θtotS and γtot the simulated values for the Stokes vectors measured by the IMSE-

system can be obtained using (3). Starting from this the image equation for each component of

the Zeeman-multiplett can be calculated separately with equation (38), where the characteristic

frequency of the component is estimated from the calculated energy splitting due to the Zee-

man e�ect. For the full image of the entire multiplett the three single images are added with

regard of the components relative intensities. The program also includes a demodulation tool

to obtain the Fourier components, which can be used for simulated and for measured data. For

the demodulation the two-dimensional Fourier transform algorithm in Python−Numpy is used.
The code also includes the di�erent equations for data evaluation of the polarisation angle θtotS
and all three case of FLC modi. A separate tool is implemented to compare the simulated and

demodulated Fourier components with the analytically calculated terms in equation (66). This

allows to prove the accuracy of the demodulation tool.

65



7.3 Comparison of simulated and measured results

This section will present the main results of the full simulation code. The results will be analysed

in comparison to the theoretical results from the former chapter and will be interpreted with

regard to measured data. A typical measured IMSE-image of the Zeeman edge emission located

near the limiter is illustrated in Figure 40 in comparison with the corresponding simulated image.

Figure 40 � IMSE-image of the Zeeman-edge emission near the limiter in ADEX Upgrade (left) and
corresponding simulated image (right).

The intensity distribution for the simulated image in Figure 40 was chosen to have a strong expo-

nential decay from the limiter inside the plasma in the narrow edge area of 0.95 ≤ ΨNorm.(R,Z) ≤
1.0 with points per viewing line k = 10. As already explained the intensity distribution on a �xed

�ux surface is of minor interest, since intensity variations cross the image are eliminated during

data evaluation. For the chosen grid discretisation a change of the angles θtotS and γtot through

the intensity distribution can be only introduced, if the local angles change rapidly across dif-

ferent �ux surface. Important for the discussion of calibration are the simulated values of the

angle θtotS and γtot, which are used to calculate the simulated image in 40 (right). The results for

θtotS and γtot are presented in Figure 41. The right part of Figure 41 shows the variation of γtot

in the range between 30◦ and 40◦. The results in the last chapter have already shown, that for

the current con�guration of the IMSE-system and such values of the observation angle γtot the

measurement of the Zeeman emission will not give accurate results for the polarisation angle θtotS .

The reason therefore is the high weighted in�uence of the circular polarisation, which prevents a

possibility of calibration. Since the Zeeman edge emission is assumed to be localised at a narrow

edge layer near the limiter, changes of the integrated polarisation angle θtotS are small for di�er-

ent exponential decays of the intensity distribution. Especially in comparison to the deviation

introduced by the circular polarisation during data evaluation the e�ect of a non optimised in-

tensity distribution for the simulation is negligible low. A very accurate intensity distribution is

therefore not necessary for a general physical discussion and interpretation of simulation results

in this chapter. In the left part of Figure 41 the simulated values of the polarisation angle are

shown, which vary between 0◦ and 15◦ in the center of the image. The range of the values for
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θtotS and γtot match the geometrical expectations from the ray trace program. If instead of the

former case, the Zeeman-edge emission is assumed to come only from one constant �ux surface

ΨNorm.(R,Z) ≈ 1.0 near the limiter, the values of θtotS and γtot do not change signi�cantly.

Figure 41 � Simulated values for the line averaged polarisation angle θtotS and observation angle
γtot for the measurement of pulse AUG 29302 with the IMSE-system.

The simulated values for θtotS represent the polarisation angle as measured by the IMSE-system

and are used to calculate the simulated image in Figure 40. In the next step the data evaluation

for the simulated IMSE-image in 40 is made using the demodulation tool of the program. The

demodulated polarisation angle from the the simulated image is denoted as θtheoS and the results

are illustrated in Figure 42.

Figure 42 � Values for the polarisation angle θtheoS from from analytical calculation (left part) and
from demodulation of the simulated IMSE-image (right part)
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The equation (69) is used to obtain the polarisation angle from the Fourier components, since

it was shown in the last chapter, that this is the correct equation for the current IMSE-system

con�guration and a magnetic �eld strength of | ~B| = 2.5 T. The only exception are for values for

γ ≈ 90◦. In this case the values of γtot are far away from this limit. The right part of Figure

42 shows the results for the polarisation angle θtheoS calculated with the full demodulation tool

using the FFT algorithm. For the results in the left part of Figure 42 the Fourier components

are calculated with the analytical equations (66) directly from the Stokes parameters. The com-

parison between both results shows, that the demodulation tool gives the same value for θtheoS in

the center of the image as expected analytically. The oscillations at the edge of the demodulated

image are an numerical artefact, which is caused by the selection of the Fourier components

during the demodulation process. In the Fourier image the Fourier components are broadened

peaks. The sides of this peaks are cut o� of by selection the Fourier component. The shape

cut and the small missing part of the Fourier component lead to small oscillations at the edge

of the demodulated image after the inverse Fourier transform is performed. The results show a

distinct deviation between the ideal polarisation angle θtotS in Figure 41 (left) and the demodu-

lated polarisation angle θtheoS in 42 (left). To analyse this more in detail the following Figure 43

shows the absolute di�erence between both values. The deviation of the polarisation angles in

Figure 43 show the theoretically expected strong dependence on y, which is on the horizontal

axis in Figure 43. For a narrow area around y = 0 mm (Pixel-No. 160) the di�erence between

θtheoS and θtotS is close to zero, which matches the theoretical expectations introduced in chapter

6.2. For measurements of the polarisation angle or for calibration the geometry of observation

via the MSE-port at ASDEX Upgrade is inapplicable, since the circular polarised part for the

σ±-components of the Zeeman multiplett perturb the measurement strongly.

Figure 43 � Di�erence between simulated line integrated polarisation angle θtotS and the demodulated
polarisation angle from the simulated IMSE-image θtheoS

68



After discussing the simulated results from the program, now follows an investigation of the mea-

sured IMSE-image in Figure 40 (left). From demodulation and data evaluation with equation 69

the polarisation angle from the measured data θmeasuredS is obtained and the results are presented

in Figure 44 (left). The right part in Figure 44 illustrates the di�erence between measured po-

larisation angle θmeasuredS and expected value θtotS .

Figure 44 � Measured polarisation angle θmeasuredS for pulse AUG 29302 (left) and di�erence between
θmeasuredS and the simulated polarisation angle θtotS (right). The marked areas are the limiter position
in white and di�erent metal plates (red).

In comparison to the simulated values θtheoS in Figure 42 the polarisation angle from the mea-

surement θmeasuredS shows not the expected characteristic dependence on y. In the center of the

measured and demodulated image the values of the polarisation angle are seems to be close to

the expected value, which is illustrated in Figure 42 (right), but the dependence of the deviation

on y is quite di�erent as for the simulated expectation. The marked areas in Figure 42 are the

limiter position (white) and the other metal plates (red). The data from this regions should

be ignored, since re�ections perturb the results. The simulation therefore does not match the

experimental data as expected and it is therefore not yet clear if the apparently good values at

the center of the demodulated IMSE-measurement are signi�cant or only incidentally correct.

The experimental results also show high local variations in order of some degrees as a results of

signal noise, which is much stronger then for the standard MSE-measurement. A physical reason

are stronger local �uctuation e�ects for the Zeeman edge emission in comparison to the well

localised and stable neural beam emission. The strong in�uence of the signal-to-noise ratio is a

new reason for the impossibility of an accurate calibration. The deviation between simulated and

measured data described here are representative of several measurements of di�erent pulses at

ASDEX Upgrade. To �nd the reason for the deviation of simulated and measured data di�erent

possible reasons will be investigated in the next section.
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7.4 Discussion of reasons for strong deviations

The results in the last section have shown a fundamental di�erence between measured data and

a full simulation of the IMSE-system installed at ASDEX Upgrade. Therefore this section will

consider various physical e�ects more in detail, which may cause this deviation.

In�uence of di�erent �lters

As already suggested, during the theoretically description of the IMSE-systems response to the

Zeeman emission, the use of an unsuitable �lter can introduce strong deviations of the measured

polarisation angle. For the measurement leading to the results in the former section a �lter

was used, which is optimised for measuring the MSE-multiplett. A change of the �lter during

measurements was not possible for early IMSE-measurement, but a �lter changer was added later

to the IMSE-system. The main focus during this early campaign lay on test measurement for the

MSE-multiplett and the Zeeman emission was only observed secondarily. For later measurements,

an available 'Hα'-�lter was used observing the Zeeman edge emission, and before for the last

campaign at ADEX Upgrade a special interference �lter optimised to the Zeeman multiplett was

purchased. To investigate possible e�ects by using the di�erent �lter, the transmittance of all

�lter was measured with a well calibrated optical spectrometer. The results are shown in Figure

45 for perpendicular incident of the light relative to the �lter interface.

Figure 45 � Transmittance of di�erent �lter for the wavelength range of the Zeeman multiplett with
splitting caused by a magnetic �eld strength of | ~B| = 2.5 T

The optimised Zeeman �lter has a high transmittance of nearly 95 % at the wavelength range

of the Zeeman multiplett, whereas the 'Hα'-�lter and the MSE �lter have a low transmittance

of around 7 %. Since absolute intensities of the Zeeman multiplett are not expected to change
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the measurement fundamentally, it is mainly important to consider the change of the intensity

ratios due to �lters. The splitting due to the Zeeman e�ect for magnetic �elds strength between

1.5 T and 3.5 T lies in a small range of 0.03 - 0.07 nm, so large di�erences of the intensities

of the σ±-components are not possible. The results in Figure 45 illustrate, that the optimised

Zeeman �lter is approximately constant over the Zeeman multiplett. For the MSE-�lter, the

intensity ratio of the σ-components is Iσ
+
/Iσ

−
= 1.05 and Iσ

+
/Iσ

−
= 0.8 for the 'Hα'-�lter

for perpendicular incident angle of the incoming light to the �lter surface. Since the angle of

incident αI changes across the image, it was necessary to measure also the angle dependence of

the transmittance for all �lter to implement a complete two-dimensional �lter function to the

simulation code. With increasing incident angle the area of high transmittance is increasingly

blue shifted, whereas the absolute transmittance decreases slowly and the �lter shape becomes

broader. For the simulation the use of di�erent �lters changes the results of the demodulated

polarisation angle θtheoS signi�cantly, where the accuracy is as expected much higher for the

Zeeman �lter as for other �lters. For the Zeeman �lter the Iσ
+
/Iσ

−
is expected to be nearly

constant for di�erent incident angles, whereas for the Hα-�lter and the MSE �lter this ratio

changes cross the image. Measurements at ASDEX Upgrate have not shown a signi�cant change

of the measured polarisation angle θmeasuredS for the use of di�erent �lters. The measured results

for the other �lter were nearly the same as for the MSE-�lter, where the measured polarisation

angle was already presented in Figure 42. For this reason �lter e�ects are not the main in�uence

factor causing the deviation between measured and simulated results. To exclude the e�ect of

�lters the optimised Zeeman �lter was used exclusively in the further test measurements.

Change of polarisation angle by system rotation

In Figure 42 the obtained polarisation angle does not show the expected strong variation cross

the image. To investigate the signi�cance of the measured results it is reasonable to prove the

response of the IMSE-system to a marked change of the polarisation direction. Since the IMSE-

diagnostic measures the polarisation angle θtotS relative to the frame of the Savart plate, a rotation

of the entire IMSE-system around the optical axis of the MSE-optics at ASDEX Upgrade would

add a constant o�set to the polarisation angle. This was well proven for measurements of the

MSE-multiplett. The value of the o�set for the polarisation angle is directly given by the angle of

rotation, but with regard to the fact, that the measured polarisation angle is only de�ned on the

interval [0◦, 45◦]. In Figure 46 two IMSE-measurements of the Zeeman edge emission are shown

for di�erent pulses at ASDEX Upgrade. Between these measurements the IMSE-system was

rotated by roughly 20◦ and the optimised Zeeman �lter was used to exclude strong �lter e�ects

in both cases. Therefore, a signi�cant change of the calculated polarisation angle was expected,

but was not measured according to the results in Figure 46. The obtained polarisation angle

lies for both pulses in the same range as already for the �rst measurement with the MSE �lter

in Figure 40. This means in conclusion, that the IMSE-system is empirically not sensitive for

measuring the polarisation angle from the Zeeman edge emission at ASDEX Upgrade. From the

theoretically calculations in chapter 6 it is already clear, that accurate values for the measured

polarisation angle are not possible for an observation angle γtot between 30◦ and 40◦. On the

other hand total loss of sensitivity is only expected for observation parallel to the direction of the
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magnetic �eld (γ ≈ 0◦), which is de�nitely not given for the current geometry of the MSE-optics.

The theoretical results in chapter 6 have also shown, that the expected measured polarisation

angle for nearly parallel observation is close to 45◦, which is in comparison to the measured values

in this section of 0◦−15◦ the other limit in the range of possible values for the polarisation angle.

Figure 46 � Measurement of the polarisation angle θmeasuredS from the Zeeman edge emission for two
di�erent pulses at ASDEX Upgrade. Between the two measurements the IMSE-system was rotated
by roughly 20◦ around the optical axis to introduce a signi�cant change of the measured polarisation.

In�uence of circular polarisation and non-statistical population of atomic states

In the last section is was already implied, that possibly the degree of circular polarisation

is di�erent in the measurements as considered for simulation. The theoretical discussion in

chapter 6 has shown, that a direct measurement of γ or the ellipticity χ is not possible with

the IMSE-system. To get an idea of the in�uence of circular polarisation for the measured

data, it is useful to analyse the ratios of the Fourier amplitudes more in detail. Therefore

the Fourier amplitudes were average over the areas of the measured image, which are not ef-

fected by re�ections, for the simulated and the measured data. For the measurements the ratio

〈|I(+,+)|〉 / 〈|I(+, 0)|〉 has typical values in the range of 1.5 − 2.5, whereas for the simulation

this ratio is with 〈|I(+,+)|〉 / 〈|I(+, 0)|〉 ≈ 7.5 − 11.0 much higher. In both cases the ratio

of 〈|I(+,+)|〉 / 〈|I(+,−)|〉 is nearly 1.1 . This signi�cant di�erence of the amplitude ratios
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was observed for several measurements and corresponding simulations under varying conditions

like di�erent magnetic �eld strengths and �lters. The deviation of the amplitude ratio can be

explained by a smaller degree of circular polarisation for the σ±-components in measurements

in comparison to the expected value from simulation. Since small variations of the γtot are not

strong enough to explain such a huge deviation, two di�erent other options for a smaller degree

of circular polarisation must be taken into account. A non-statistical population of the atomic

states can theoretically cause the deviation in the amplitude ratios. After theoretical estima-

tions the state population must di�er very strongly from the statistical case, which is physically

less realistic for the Hα-edge plasma. The second option is a loss of degree of circular polari-

sation through the MSE optics. To investigate this more in detail a measured spectra of the

Zeeman split Hα-edge emission can be useful. For technical reasons this could not be realised

for this thesis, because of the small energy splitting high spectral resolution is required. A suit-

able spectrometer, which allows a measurement of the light passing the MSE-optics, was not

available. The main problem with explaining the di�erence of the amplitudes with a smaller

degree of circular polarisation is the fact, that this contradicts the theoretical assumption of an

higher sensitivity for polarisation measurements. The results in the former section have shown,

that this sensitivity is de�nitely not given for the measurements. Until now the reason for this

inconsistency was not found. A possible solution can be a conversation from circular to linear

polarisation, which will be described more in detail in the following section.

In�uence of the dielectric mirror and coating on the surface of the protection cover

Until now the dielectric mirror was assumed not to change the ratio between linear and circular

polarisation. A normal mirror would change this ratio due to di�erent re�ectance coe�cients

for the parallel and the perpendicular wave component relative to the incident plane. For the

special dielectric mirror the both re�ectance coe�cients are nearly identical for the wavelength

range of the MSE-multiplett. Only under this conditions a useful measurement with the MSE-

system is possible. The wavelength of the Hα-emission is slightly away from this ideal range, so

it was assumed, that this is still valid for the Hα-emission in ASDEX Upgrade. To prove this, a

measurement of the mirror properties for di�erent wavelength, incident angles and polarisation

states is planed in the future. Until now an in�uence of the mirror can not be excluded totally.

On the other hand a coating �lm emerges at the surface of the protection cover during plasma

operation, which may also in�uence the polarisation. The possible in�uence of the coating layer

was ignored until no and should be measured in the future to verify the expectation, that the

coating has only a small e�ect.

Conclusion from measurements

The comparison between measurements and simulations have shown a fundamental deviation of

the results. Especially the total absence of signi�cance for the measurement of the polarisation

angle was not expected for the simulated conditions, which seem to be reasonable from geometry

estimations. During the work for this thesis several di�erent in�uencing factors, which were

introduced in this section, were analysed and discussed, but the main reason for this strong

deviation between simulation and measured data was not found yet. Di�erent factors like coating
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of the protection cover and small �lter asymmetries can now be excluded. On the other hand

some possible reasons like the in�uence of the mirror or from the MSE optics demand a more

precise investigations and additional measurements. To explain the main deviation between

simulation and measurements, it is helpful to reduce the complex measurements at ASDEX

Upgrade to a simpler test measurement at laboratory. This allows to produce light with well

known polarisation state and therefore an experimental test of the response of the IMSE-system

to simulated Zeeman emission with arbitrary polarisation angle θS and ellipticity χ representing

the observation direction γ. Such an experiment would solve the fundamental question, whether

the huge di�erence between simulation at ASDEX Upgrade and corresponding measurements is

caused by a defective theoretically description of the IMSE-system or by unrecognised factors in

the full simulation at ASDEX Upgrade. A �rst small experiment was already performed and the

results will be described in the next chapter.
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8 First laboratory test for the IMSE-system measuring Zeeman-

emission

The last chapter has shown, that a match between the simulation for the IMSE-system and

measurements of the Hα-edge emission at ASDEX Upgrade was not achieved. Since the physical

reasons for the mismatch was not fully clari�ed by several test measurements at ASDEX Upgrade,

simple test measurements with emission, which has well de�ned polarisation states are useful.

Such a performance test was previously performed for a simulated simple MSE-spectrum [27],

but is more complex for the Zeeman emission due to the additional circular polarisation. For the

MSE performance test, the three spectral components were simulated using three identical light

bulbs as light sources. The di�erent wavelength were adjusted by using narrow �lters, which

were tilted relative to the incoming light. The spectral width of the �lter was nearly the same

as the spectral width of the MSE-components. It was already mentioned, that with increasing

incident angle the wavelength range of high transmittance is blue shifted. To adjust the cor-

rect wavelength a spectrometer was used. The light from the three bulbs was linear polarised

with polarisers with regards to the di�erent polarisation angles for the σ- and π-components.

To combine the three rays two semi-silvered mirrors were used. The superposed full simulated

MSE-spectrum was focused onto a virtual image plane. Form there it is directly measured with

the IMSE-diagnostic.

For the Zeeman emission, a simulation of all three components and therefore the entire Zeeman

spectrum at once was not possible, since the additional degree of circular polarisation requires

more optical plates then available. Therefore, each component was measured with the IMSE-

system independently and the measured images were added later. This is the same way as the

theoretical description was calculated. To simulate each component separately, a single light bulb

was used. A lens behind the light bulb makes the light approximately parallel. The wavelength

was again adjusted by tilting a narrow �lter and measure the transmitted light with a spectrom-

eter. Afterwards the light was linear polarised with a polariser to the required polarisation angle

relative to the Savart plate. For the σ-components, a quater-wave plate was introduced into

the beam path to add circular polarisation. Since this also in�uences the polarisation angle, the

polariser was rotated to compensate the change. The entire optical setup is illustrated in Figure

47.

Polariser
 

Lens Tiltable
Filter
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Plate
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Figure 47 � Sketch of the experimental setup for the test measurement at laboratory
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The recorded IMSE-images for each component where added at the PC with regard of the

relative intensity for the Zeeman components. Therefore the absolute intensity of the images

were normalised and multiplied with the new intensity factor. Since the intensities of the Zee-

man component depend on the observation direction, the correct ratio can be estimated from

the angle γ, using following relations with Iπ = 2Iσ (see section 6.1):

Iπexp = Iπ sin2(γ) and Iσexp = Iσ(1− cos2(γ)) (85)

The polarisation state of the simulated Zeeman spectrum was chosen to represent the expected

geometry at ASDEX Upgrade. Therefore, a value of the observation angle was assumed with

γ ≈ 35◦, which is a realistic value as illustrated in Figure 41. The corresponding ellipticity χ±

= ∓39.3◦ for the σ±-components can be calculated with equation 31. The polarisation angle

of the π-component was selected with θS ≈ 26◦ and for the σ-components with θS + 90◦. This

represents the expected polarisation angle at ASDEX Upgrade after the rotation of the IMSE-

system around the optical axis of the IMSE optics. This polarisation angle represent a reasonable

value, since the measured polarisation angles at ASDEX Upgrade were always smaller the 15◦.

That the system measures as expected is more convincing if a higher value for the polarisation

angle is simulated to exclude accidentally �tting values. The simulated image for the added three

Zeeman components and the corresponding two dimensional Fourier transform of the image are

presented in Figure 48.

Figure 48 � Experimental test image for the IMSE-system measuring the full Zeeman multiplett
with well de�ned polarisation angle θS and ellipticity χ (left) and corresponding two-dimensional
Fourier transform (right).

Demodulation of the Fourier components and the calculation of the measured polarisation angle

θmeasuredS with equation (69) give the results presented in Figure 49. For the center of the image

the value of θmeasuredS is close to the expected value θS . Local variations at the center of the

image are in the order of 2◦. To the edge of the image the value for θmeasuredS decrease strongly
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caused by the experimental setup, since deviations from the de�ned intensity ratio are given at

the edges and also deviations of the component wavelengths due to steep incidence angles, when

the light is crossing the �lter. Therefore, the strength of the expected intrinsic error with y can

not be checked for the test measurements. The result presented here should be understood as a

�rst clue, that the IMSE-diagnostic measures Zeeman emission with arbitrary degree of circular

polarisation as expected from mathematically calculations in this thesis. To make sure that the

diagnostic works always as expected several additional test should be performed in the future to

prove the sensitivity of the measurement to variations of the polarisation angle θS , the ellipticity

χ and the energy splitting (i.e. magnetic �eld strength), which in�uence the spectral contrast

functions. These tests are not part of this thesis for temporal reasons, since signi�cant tests will

require a high accuracy of the optical setup and time consuming analysis.

Figure 49 � Demodulated polarisation angle θmeasuredS from the measured test image in Figure 48.
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Summary and Conclusions

The aim of this thesis was the investigation of the IMSE-system's response to the Zeeman Hα-

edge emission at ASDEX Upgrade with regard to a possible use for calibration. Therefore, a

general and complete theoretical description was developed, assesed and implemented in a for-

ward model, which includes the full geometry for the diagnostic installed at ASDEX Upgrade.

The theoretical investigation has shown that the emergence of circular polarisation for the σ±-

components of the Zeeman-multiplett changes the functionality of the IMSE-diagnostic substan-

tially and makes a modi�cation of the data evaluation inevitable. The dominant in�uence of

circular polarisation restricts strongly the parameter range, for which an accurate measurement

of the polarisation angle is possible for calibration. This e�ect is enhanced because the current

system con�guration is not optimised for the value of frequency splitting of the Zeeman-e�ect.

A total optimisation of the system by changing optical components is theoretically possible,

but is only valid for a narrow range of magnetic �eld strengths and is therefore only practi-

cally useful within limited parameter range. An nearly perpendicular observation direction is

the only solution for accurate measurements, since the degree of circular polarisation vanishes

completely. Unfortunately, this is not practically achievable. Although the polarisation cannot

be clearly extracted, it remains in principle possible to perform the calibration by obtaining a

match between the forward model and measured data. The full forward model has shown, that

the viewing geometry at ASDEX Upgrade does not allow a reasonable calibration for the current

IMSE-system. On the other hand, the implemented forward model does not match the measured

data. An analysis and comparison of several measured and simulated data has led to an exclu-

sion of all the most obvious physical reasons for this deviation. A simple performance test in the

laboratory for �xed conditions, implies that the system operates as theoretically expected and an

unconsidered e�ect causes the deviation of simulated and measured data for the full simulation

of the IMSE-system at ASDEX Upgrade. To verify this, more performance test measurements

with parameter variations should be performed in the future. The results of this thesis have

signi�cantly improved the understanding of the IMSE-diagnostic and will be used as part of the

design for a new IMSE-system, which will be installed at ASDEX Upgrade in 2015.
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