

Max-Planck-Institut für Plasmaphysik

Need for ECRH power feedback on density profile.

O. P. Ford, S. Bozhenkov

07.04.2025

High Performance

- 'High-performance' (T_i , W_{dia} , β) require peaked density profiles.
- Peaked density profiles created with: NBI, pellets, TESPEL, Boron injection, intrinsic (low P)
- Supported by natural particle pinch, flattened by particle diffusion.
- We add O2 ECRH to take advantage of reduced heat transport, but raised ∇T flattened ∇n_e .

High Performance

Situation is fundamentally unstable:

ECRH pump-out

- ECRH 'pump-out' effect increase with more power. This doesn't seem to be linear.
- The effect is *very* configuration dependent.
- Balance point is roughly: High/low mirror: ~1.5MW
 Standard: ~2.3MW
 FMM002: 3.5MW

For standard: $dn/dt = -2.25 P(MW) 10^{19} \text{ m}^{-3} \text{ s}^{-1}$

Complications

- Ideally feedback would be on ∇n or $n_e(0)$. Line. int. ne often signal much weaker and edge density changes.
- NBI breakdowns during ramp-up change the initial density and change the required power.
- Seeding raises required ECRH power for same density control. Creates poor reproducibility so should be avoided, but may be needed for heat load mitigation.

Initial drop

 At ideal power, density often drops initially but stabilises and stay in reduced transport.

- NBI + O2 reintroduction reasonably reproducible. Lots of experience.
 - High-mirror: Lots of experience, poor max $T_i = 1.8 keV$ hard to tell if above normal.
 - Standard: Good experience, reasonable max T_i = 2.5keV
 - FMM002: Some experience, excellent max $T_i = 3keV$, over $W_{dia} > 1.5$ MJ limit.
 - FTM: Little experience, excellent max $T_i = 3keV$ (probably).
- Pellet + NBI + O2 reintroduction
 - Less experience,
 - +higher T_i ,
 - poor reproducibility of start density
 - + more time to see what feedback does.

