
Max-Planck Institut für Plasmaphysik W7X CXRS on NBI. Conceptual Design Review QSK / P122 O. Ford

K2 AEM21 Vacuum Window

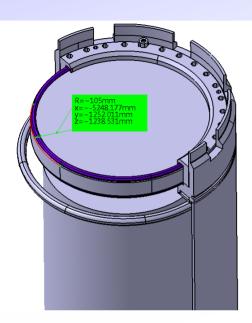
AEM21 Port tube is 250mm. Need 25mm space because of inaccuracies and changes during baking. Also need space for mirror drive rod. Rough initial design looks like:

50% of light from the 130mm design:

Would be easiest to use a standard ConFlat flange with window, but sizes are: No standard flanges with 25mm rim.

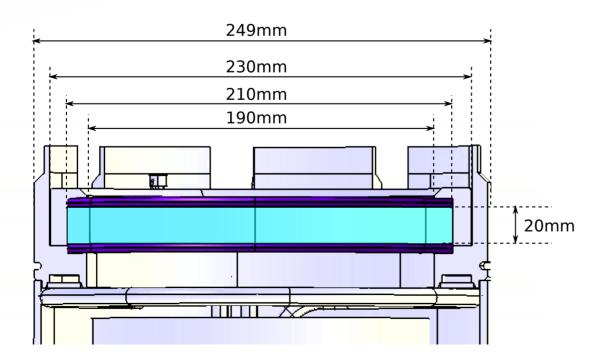
From standard CF range, only 152mm fits, but 90mm aperture loses

CF160: 205mm, 136mm aperture CF100: 152mm, 90mm aperture


Collected light vs window aperture 10000 Source Solid Angle / µSR core 150mm 8000 sma 130mm 6000 110mm σ Δ 4000 90mm 2000 ASDEX Upgrade collection optics (COR) 0**⊏** 5.5 5.6 5.7 5.8 5.9 6.0 R/m

Max-Planck Institut für Plasmaphysik W7X CXRS on NBI. Conceptual Design Review QSK / P122 O. Ford

K2 AEM21 Vacuum Window


M-port from Thomson scattering uses almost full 250mm of port, as port tube is flexible and can move with port.

Window is 210mm. Ring outer edge = 230mm, clear aperture =190mm, rim width 20mm.

Uses Delta Helicoflex seal.

Design already W7X approved, thoroughly vacuum tested and used during OP1.1.

Can we reduce this a 130mm window? Can then use something similar for the A-port (150mm tube, 110mm window)

