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Abstract

1 Stokes vector and Standard Muller Matricies

Figure 1: Definition of wave polarisation in terms of ellipticity angle y and principal polarisation
angle 6.

For light with intensity Iy, polarisation angle 6 and ellipticity angle x, stokes vector is:

S0 IO

si| _ Iy cos 20 cos 2 (1)
So I sin 20 cos 2y

S3 Iy sin 2y

Muller matrix[I] for an ideal polariser at angle 6.

1 cos 20 sin 260 0
1 | cos 20 cos? 20 sin20cos20 0 )
2 | sin20 cos20sin200  sin®26 0
0 0 0 0
Polariser at 0°:
1 1.0 0
1 1.0 0
% 00 0 O (3)
00 0 O

—_



Draft 2 DOUBLE SPATIAL HETERODYNE

Polariser at 45°:

10 1 0
1]0 0 0 0
211 0 1 0 (@)
00 0 O
Delay plate with phase delay A¢ at angle 6:
1 0 0 0
0 cos?260 4+ cos A¢sin®20 (1 — cos Ag)sin26 cos20 — sin A¢psin 260 (5)
0 (1—cosA¢p)sin260cos20 sin®20 + cos Apcos?20  sin A¢cos 26
0 sin A¢sin 260 — sin A¢ cos 20 cos A¢
Delay plate at 0°:
10 0 0
0 1 0 0 (6)
0 0 cosA¢ sinAgp
0 0 —sinA¢ cosAgp
Delay plate at 45°:
1 0 0 0
0 cosA¢p 0 —sinAgp (1)
0 0 1 0
0 sinA¢p 0 cosA¢
Delay plate at —45°:
1 0 0 0
0 cosAgp 0 sinA¢ (8)
0 0 1 0
0 —sinA¢ 0 cosA¢

2 Double Spatial Heterodyne

This is the first of J.Howard’s Coherence Imaging MSE systems [2]. It encodes the polarisation
properties in the difference between two spatial fringe patterns. The polarisation angle 6 is of
primary interest and in the simplest set-up is encoded in the fringe amplitude difference, giving
the system the name ’Amplitude Double Spatial Heterodyne’ (ADSH).

The ADSH system consists of:

1. Savart plate at 45° with phase delay A¢;
2. Displacer and Delay plates at 0° with total phase delay Ags
3. Polariser at 45°

Compiling Miiller matricies:

10 1 0 10 0 0 1 0 0 0 S0
g_1 0 00 O 0 1 0 0 |0 cosAgr 0 —sinAgy | | s )
= 211 0 1 0 0 0 cosAgs sinAgps 0 0 1 0 So

0 0 0O 0 0 —sinA¢y cosAgps 0 sinA¢; 0 cosApy 83
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1 010 1 0 0 0 S0
g_1 00 0 O 0 1 0 0 . s1cos Agy — s38in Ay (10)
=211 01 0 0 0 cosAgy sinAgy S9
00 0 O 0 0 —sinAgs cosAgps s18in Agq + sz cos Agy
1 0 1 0 S0
g — 1 0 0 0 O S1 COSAd)l — 83 sinA¢1 (11)
=721 0 1 0 S9.c08 Ao + (51 8in Ay + s3 cos Agy) sin Agy
0 0 0O —So8in Ay + (81 sin Ay + s3 cos A¢y) cos Agpa
S0 + S2.c08 Ada + (51 5in Ay + s3 cos Agy) sin Agy
S=31 0 (12)
= 2| 80+ s2c08 A + (s18in Ay + 3 cos Ay ) sin Ago
0
Camera only measures intensity, so the first component gives the image equation:
21 = sy + 89 cos Ao + s1sin Ay sin Agg + s3 cos Agq sin Ags (13)

The full image can be built simply by adding this for each Stokes component, since the emission
is usually incoherent.

3 Phase Delays

The form of A¢; and A¢s can be derived from the expression for OPD in a general waveplate

Figure 2: Displacer plate - Homogeneous uni-
axial plate with optics axis tilted at angle 6 to
surface.

L Plate thickness.

Ao Wavelength in vacuum.

n,,Ne Refractive indicies.

6 Angle between optic axis and plate surface.
« Angle of incidence to plate surface.

0 Angle between incidence plane and optic axis

plane.
S = n2sin®0+ n?cos’ 0
1
2 2.2 \3
Ao\ (n? — n?sin® a)
2¢Lo = +2 (n§ — nﬁ) sin @ cos @ cos d sin a+ (14)
s

—e [n2S — [n? — (n2 — n?) cos? 0 sin” 8] n? sin? a]%



3 PHASE DELAYS

Draft

For the IMSE delay plate 8 = 0°:

ApAg .9 1 Te . 9 n?
- e — 1- el - 1- 1o 1
oL {no Ne — Sin a2no ( e { sin” & n2 (15)
For the displacer plate § = 45°:
ApAg (no —ne)  (n2—n?) .
5T [ 5 + (2 5 12) cos d sin « (16)

Figure 3: Savart plate - Two displacer plates of

the same thickness, with the 2nd rotated at 90° Y

to the first. Ordinary ray in first plate becomes
extraordinary in second plate and vice-versa, so

that &y = &; — Z. o

The savart plate has 8 = 45° and is two displacer plates with orthogonal §:

8o, = Ao(kd)+ a0 (55— 3) o)
2rL (n2 —n?) . £\
\/5)\0 m S1n ((5 =+ Z) SN & (18)
In the OPD equation, § is in the coordinates of the ordinary and extraordinary axes of the
crystal but the Savart is at 45° in the ADSH system axes, so we can set § — (6 — 7).
The imaging lens has focal length f; and is focused at infinty onto the CCD, so in terms of

the CCD coords:

Ags

fi>>xy

sina = (22 +y?)/fi
cosd = x/(z* 4 3?)
sind = y/(2* + y?)

A¢y comes from only the Savart plate, and is:

V2rLyN
App = S y
LN
a \/ificwy
A¢ = owy (19)
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with N = (n2 —n?2)/(n2 + n?).

e

A, is from the displacer and the delay plate (ignoring O(a? terms):

2m (% + LTU) (no - ne) + 27TLdN

A
> Ao Nfi ¢
Lq _
_ (% + L) (no ne)w+ Ldea:
¢ cfi
Aps = Pwz+yw (20)

For the AUG IMSE:

e Doppler shifted D,, emission: 651nm < A < 655nm so |w’| < 10!

e All plates are Barium Borate (aBBO): n, = 1.666, n, = 1.549, N = 0.073
e Plate Thicknesses: Ly = 5.4mm, Ls = 7.6mm, L, = 1.2mm, f; = 50mm

e CCD Size: |x,y| < bmm

LN

a = T ~3x 1071 (21)
LgN
f = cdf‘ ~3x107H (22)
La 4 1 —
v = (B4 L) (o =ne) o g (23)

c

lawy, Bwz| < 1072 | 1 —exp(iawy) < 107*
yw| <1071 | 1 —exp(iyw) < 1072

The image equation, for each individual Stokes component becomes:

21 = s +59 cos(fwzx + yw) (24)
+51 sin(awy) sin(fwz + yw)
+53 cos(awy) sin(Bwz + yw)

4 Simple MSE multiplet

This section is only for a demonstration of the basic principle of the use of the Delay plate to
analyse a net-unpolarised multiplet.

The MSE multiplet consists of the 3 components 7~, o and 7. Emission from different
components is incoherent as they come from different Quantum events so the image is a super-
position of equation for each component. The central ¢ component has some frequency wg
and the m wings have wg + Aw. The polarisation of the 7s are aligned at 90° to the o, so have
sT = —s7 and s§ = —sg (Here we choose o as polarised at §). For MSE, there is no net circular
polarisation so s3 = 0. The intensity of both 7s together is the same as the intensity of the
polarised fraction of o.
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The so component of the image combined equation becomes:
250 = sgcos(Bwr + yw) (25)

cos(Bz + v)wo
2[00 = 82 —% cos(Bx + v)(wo + Aw) (26)
—35 cos(fr +7v)(wo — Aw)

cos(Bz + v)wo
COS[(ﬂw + 7)wo] cos[(Bz + v)Aw]

2, = s sin[(Bz + v)wo] sin[(Bz + v)Aw] (27)

os{(5 + 7)) cos|(Bz +7)Au]

in[(Bz + 7)wo] sin[(Bz + 7)Aw]
cos(Bx + v)wo

— 5 cos[(Bz + v)wo] cos[(Bzr + v)Aw]

sm&ﬁx + ¥)wo] sin[(Bz + v) Aw] (28)

(

o
&

M\,_.l\)\b—tw‘,_.w\u

28

+
m\mh—'

2.[52 = S92

—5 COS

3 cos{(Bz + V)WO} cos[(Bz + 7) Aw]
—35 sin[(Bx 4 v)wo] sin[(Bz + v)Aw]
2,5 = sgcos[(Bx + v)wo] — s2 cos|[(Bz + v)wo] cos[(Bx + v)Aw] (29)
20 = s2[l — cos(Bz + v)Aw] cos(Bz + v)wo (30)
For the s; component:
251 = s1sin(awy) sin(fwz + yw) (31)
4l = spfcos(Bz + v — ay)w — cos(Bx + v + ay)w] (32)
8l = s (33)
2cos(fz + v — ay)wo (34)
—cos(fBx + v — ay)wp cos(Bx + v — ay)Aw (35)
—cos(fx + v — ay)wo cos(fx + v — ay) Aw (36)
+sin(fz + v — ay)we sin(Bz + v — ay)Aw (37)
—sin(Bx + v — ay)wp sin(Bz + v — ay)Aw (38)
—2cos(fBx + v + ay)wo (39)
+ cos(Bz + v + ay)wg cos(Bx + v + ay)Aw (40)
+ cos(Bx + v + ay)wg cos(Bx + v + ay)Aw (41)
—sin(Bx + v + ay)wo sin(Bz + v + ay)Aw (42)
+sin(Bz + v + ay)wo sin(Bz + v + ay) Aw] (43)
8L, = s ( cos(Bx + v — ay)wo [2 — cos(Bz + v — ay)Aw — cos(fx + v — ay)Aw] ) (44)
s —cos(fBx + v + ay)wo [2 — cos(fzx + v + ay)Aw — cos(fz + v + ay) Aw]
For AUG MSE, AX = 0.5nm for 7, o separation, so:
Aw =~ 2x107%2 (45)
YAWw = 2 (46)
laAwy| ~ |BAwz| < 0.3 (47)
(18)

The aAwy and SAwzx are relatively small as arguments to the cosine and sine, so we can
approximate cos(fz + v + ay)Aw — cos yAw:

41 = s1[1 —cosyAw] (cos(Bx + v — ay)wo — cos(Bz + v + ay)wo) (49)
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Combining I1 and I, back to the full image:

o = so+ 2l + 20, (50)
s2 cos(Bx + v)wo
= so+[1—cosyAw] | 3s1cos(Bz + v — ay)wy (51)
—3s1cos(Bx + v + ay)wo
= $p+ [l — cos YAw] [s2 cos(Swox + ywp) + s1 sin(SBwox + ywp) sin(awoy)] (52)
21 = sp+ s2¢ cos(Bwox + Ywo) + $1¢ sin(awpy) sin(Bwox + ywo) (53)

This is the same as the image equation (equation for the o component, except with the
fringe amplitude is reduced relative to the background intensity. This reduction is the contrast:

¢ =[1-cosyAuw] (54)

If there is no fixed delay v = 0, then ¢ = 0 and there will be no fringes. This is due to the 7 and
o cancelling out. The contrast is a maximum at yAw = 90° and the wave plate thickness L,,
is chosen such that this is true for the expected splitting (Aw) via equation More generally,
the constrast function is actually the fourier transform of spectrum.

5 Demodulation (Single Wavelength)
The DSH image equation can be expanded as:

21 =89  +s2  cos(fwz + yw)

+1s1 cos(awy — fwz — Yw)
—381  cos(awy + fwr + yw)
+1s3  sin(awy + Bwz + Yw)
—3s3  sin(awy — fwr — yw)

In exponential form:

21 = S0
+1syexpi(+Bwz + w) +1ssexpi(—fwz — yw)
+351expi(+owy — fwr —yw)  +1s1expi(—awy + Bwr + Yw)
—1s1expi(+awy + fwz +yw)  —1s1expi(—awy — fwz — Yw)
71133 exp i(+awy + fwz + yw) +z%33 expi(—awy — fwr — yw)
+itsgexpi(+awy — fwr —yw) —itszexpi(—awy + fwz + Yw)
81 = 4sp
+2s5 exp i(+pwz + yw)
+2s9 exp i(—pwr — yw)
[ ] exp i(+fwz + yw + awy)
+[s1 + s3] exp i(—fwr — yw + awy)
[ ] expi(+fwz + yw — awy)
[ ] (- )

expi(—pfwr — yw — awy
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The seven components of this, are denoted by their signs in (z,y): (0,0), (+,0), (+,+), (+,—)
etc.

For a single w, the 2D Fourier Transform (FT) from (z,y) into some (kz, ky) consists of the
FT of the stokes components, convolved with a delta functions at the respective frequency. e.g.,
the (4,4) component is:

FTRI]=.. — FT[s1+1s3]® (ks — pw)d (ky — aw) (55)

Figure 4: A typical DSH image and Fourier Transform. Typical filters for the 7 principle com-
ponents are shown. Other visible small components result from small (j0.3°) misalignments of
the plates to the final polariser. Spectral bleeding from edge effects can also be seen.

If variations in s;(x,y) are slow, these appear separated in the FT, as in figure EI and can be
filtered (cut out) and individually inverse FT’ed.

8I(+,+) = (s1 —is3)expi(+fwr + yw + awy)
I8I(4,+)] = [s1 —iss]
All 3 components
[8I(+,0)] = 2s2 (56)
BI(+, )] = |s1 —iss] (57)
IBI(+,=)| = |s1+iss| (58)
If s3 << so (small ellipticity x, or polarisation angle ¥ ~ 45°)
I1(+,0 2
0 252 _ o090 (59)

I(++H)] s

which is the desired polarisation angle image.

6 Full Spectrum

We really have a continuous spectrum over which the stokes vector changes both in intensity
and polarisation state s(w). Accross the MSE spectrum, the polarisation variation is not large,
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except for rapid changes Af = 90° as it passes from o dominated to m dominated, which appear
as sign changes in the Stokes components. The stokes components can therefore be separated
into s(w) = I(w) s, with the sign changes held in I(w). The full image is an integral over all
frequencies but is best expressed relative to some central wy. e.g. for (+,+):

8I(z,y)=... + 51/I(w’)expi[(w0—w')(ﬁm+ay+’y)] dw' + ... (60)

The FT components are now convolved not with delta functions, but with integrals over the
spectrum:

FT[SI] = ..+ FT[si] @ / 1) expi(wo — o) ( fé’?k; _ﬁg&_fﬁ))ﬂ o + ... (61)

Approximately the same amount of the spectrum is from the o as from the © components and as
these have opposite sign in I(w) the integral would vanish. The delay plate, which determines -y
should therefore be set such that the sign change of the oscillating exp iy(wy — w’) term roughly
cancels the sign change in I(w).

The range of w is small (‘:j—; < 0.004), so the components are still separable. Cutting out

just the (+,4) part and applying the inverse FT still gives something oscillating at the central
frequency wq:

8I(+.4) = s / (W) expi [(wo — o) (Bz + ay + 7)] do’ (62)

51 </ I(w") exp [—iw'(Bx + ay + 7)) du/) exp [iwg (Bx + ay + 7)) (63)

The amplitude of that oscillation is now multipled by a function of the spectrum:
8I(+,+)] = [s1|[D(Bz +ay +7)| (64)
L) = /I(w') exp [—iw'z'] dw’ (65)
where T'(2’) is the amplitude of the 1D FT of the spectrum, with z’ as the spatial variable.
The (+,—) component is identical but with 2’ = (x — ay + ) and the (+,0) component

with 2’ = (Bz + 7).
The problem now is that we get (for s3 << 1):

I+ _ s T(Br+9)]
=D~ 5 TG +ay+7)

and need to find a way to extract % from this.



Draft 7 SPECTRUM RESILIENT DEMODULATION

7 Spectrum Resilient demodulation

Returning to the full image equation components:

8[(0 0)= s
81(+,0) = +2s9 expi(+Pwz + yw)
8I(+ +) = —[s1+is3] expi(+fwz +yw+ awy)
8I(+,—) = +[s1 —is3] expi(+Bwz +w — awy)
81( ,0) = +2s9 exp i(—fBwr — yw)
8I(—,+) = +[s1+is3] expi(—Pwzr—yw+ awy)
8I(—,—) = —[s1 —is3] expi(—fwr —yw — awy)

Try to balance the I terms by using I(+, —) instead of the modulus to remove the exp(iwp...)
terms:

U+ )+ -) _ =(si+s3) DBz +y+ay)l(fz 45— ay) (67)
I(+,0)2 +53 D(Bx + )2
Substituting:
wez = W(Br+ay+7) (68)
Y= Gatoyiy) (69)
Lw) = I (W‘M w) (70)
Do+y+ay) = [1)expl-ia! (B +ay+ 7)) do’ (71)
= Grtoyi) / I, (wq) exp [—iwg 2] dw, (72)
And, erm....
A+ DI+ -) (Bz +)? (73)
I(+,0)? (Bz + ay +7)(Bz — ay +7)
([ In(wa) exp [—iwq 2] dwy) ([ Tp(ws) exp [—iwyz] dwy) (74)

(f Ie(we) exp [—iw,z] dwc)2

This isn’t going anywhere, so I haven’t actually proved they cancel, but they look.. err...
balanced, and it works much better in model and in the lab. So, keeping ellipticity this time, it
is:

4I(+7+)I(+ﬂ 7) ~ 7(5% +5§) (75)
I(+,0)? +53
_ —(cos? .292(:052 X + sin? x) (76)
sin” 20 cos?
_ —(cos? ?0;— tan? x) (77)
sin” 20
41 I(+, — tan?
ME DI D) g4 450) = B0 X (78)

sin? 26

10
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8 Ellipticity

Ellipticity effect is strong if sin(20) << 1, even if it is small, so it is useful to be able to measure
it.
Adding a A\/4 plate before system gives:

SO So
/
51 31
1| = (79)
52 S3
/
S3 —S89

We do this with an Ferro-electric crystal (FLC). In principle, it is always A/4 phase shift,
but when off is aligned to the first plate axes so does nothing. More accurately, it swaps s; with
—s3, which has no effect on the spectrum balanced expression for 6 in equation When on, it
is a A\/4 plate.

Amplitude is now:

A+ DI (st 483 T+ gl —y) (50)
I(+,0)? +53 I'(x)
2 2 .2 2

- _ (cos® 26 cos X'—;sm 26 cos® ) (81)

sin” x
= —tan?(45° — x) (82)
(83)

The reciprocal gives tan?(x), which can now be removed from the original:

P AI(+,+)I(+,-) OFF _ —(cos? 20 + tan? ) (84)

B I(+,0)? B sin” 26
~Xsin?20 = cos®20 + tan® x (85)
(1—X)sin?20 = cos?20 + tan? x + sin? 20 (86)

. 9 tan? y
20 =

sin Lo (87)

9 Off-spec FLC

The supposedly A/4 FLC can actually have phase of 180° 4+ §¢ (A.Thor). When switched off,
at any d¢, the effect is still only to rotate arbitrarily between s; and —s3. Any d¢ still does not
effect the result of equation

When switched on however, the FLCs effect is now:

cosA¢p = cos(§ +0p) = —sindgp (88)
sinA¢ = sin(f +0¢) = cosdo (89)
S5 10 0 0 S0
s) [0 1 0 0 s1
sh a 0 0 —sindg cosdg S9 (90)
sh 0 0 —cosdp —sindg S3

11
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The FLC used in the AUG IMSE has A¢ = 81.419° at A = 653nm. At room temperatue, it is
also has a non-45° switching angle, but this returns to 45° at a temperature of 47°C. A.Thor’s
results have a similar §¢ of a few degrees, so small angles approximation is ok here.

S0
/ S1
5 - S3 — 325¢) (91)
—89 — 830¢

¢

Define o = s3/51, = s3/s1. Amplitude with FLC off is the same as before:

_ AP ]TT  —(s3+s3)
A= [ I(+,0)2 } - +52 (92)
52 = s Ass (93)
B = 1-a?4 (94)
Ampltiude with FLC on is now:
A DI+ )Y (R + s
A e e o
B §2 4 83 + s30¢% + 2525300
B = - 53 4 s30¢% — 2595300 (96)
_ 1+a% 4 %69 + 20309
B = e a2 —2apes 57
208B8p — 2080 = 1+ BB+ a?Bégp? + o + (252 (98)
2030p(B —1) = 1+ B*B+d¢*) + a*(1 + Bsg?) (99)
(100)
Square and substitude 3% from FLC off ampltude:
(266(B — 1))%a?82 = [L + B%(B + 6¢°) + o2(1 + B6¢*)]? (101)
— [14(1—a®4)(B+5¢%) + a*(1+ Bsg*)] (102)
= [1+(B+6¢%) — a®A(B + 5¢%) + o*(1 + B6¢*)]” (103)
— [(1+B+66*) +a®(1 + Bg* — AB — A5¢%)] (104)
(105)
Collecting up some constants:
X = (14 Bé¢p? — AB — Asp?) (106)
Y = 25¢(B-1) (107)
Z = (14+B+d¢p?) (108)
Y228’ = [o’°X +7] (109)
(110)

12
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and substituting the LHS %

Y2a?(1—a?4) = o*X?*+ 722 +2°X7 (111)
0 = —(AY?2+X%)a* + (Y2 -2X2)a? - 72 (112)
(113)

Solving the quadratic for the polarisation:

tan?(20) = o? (114)

(Y2 -2X2)+ /(Y2 -2XZ)2 — 4(AY? + X2) 72
- 2(AY2 + X2) (115)

And recover x for each solution via A:

g2 = 1-a’A (116)

tan?(2x)
wo?(20) 1 —tan?(20)A (117)
tan?(2x) = cos?(20) — Asin®(26) (118)
(119)

10 Phase modulation

For both FLC ON and OFF, phase carries some information too.
Taking phase of (+,+) component, for FLC OFF:

8I(+,+)%FF = —(s1 +is3) expi(+Pfwz + awy + yw) (120)
= —(s1+1is3)expif (121)
' = —s1cos&+ s3sing (122)
¥ = —s1sin€ —s3cosé (123)
tan® — S _ sising + s C(.)sg _ tang + £2 (124)
R spcos€ —sgsiné 1—2—‘;’tan§
tan & + tan 2x
_ in 2Xcos 20 (125)
1- cos 20 tan£
= tan({+ O) (126)
o(+,+) = {+6 (127)
(128)
where tan © = t(fzrsl ;’0‘ which is a bit like the electric field amplitude ratio igyl‘ = tsirll g;‘

That can in principle give the x like thing to eliminate from the amplitude measurement to
recover 6, but now needs calibration to remove the spectrum dependent offset held in £. If the
spectrum changes slowly, it might be possible to do the amplitude based y determination less
often by switching the FLC, use that to calibrate or check the phase determination, and then
keep the FLC off for several frames.

13
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PHASE MODULATION

The three components give:

Bwx +yw + awy + ©
Bwzr + yw — awy — O

= fwzr+yw

(129)
(130)
(131)
(132)
(133)

Unfortunately, the desired © cannot be separated from w variations in y. Also w(x,y) cannot be

obtained directly.
With the FLC on, we get:

8I(+,+)°N —(s1 — is2) expi(+Lwr + Yw + awy) (134)
= —(s1 —1isg)expif (135)
R = —sycosf—sgsiné (136)
¥ = —s1siné + sacosé (137)
S sysiné — sgcosé tan§ — 22
t (P = —_ = — 1 1
an R s1cos€+ sgsiné 1+§—jtan£ (138)
tan & — tan 260
- U5 e 1
1+ tan 260 tané (139)
O(4,H)N = -2 (140)
(141)
O(+, )N = Bwz+w+ awy — 20 (142)
O(+, )N = Bwz+yw— awy + 20 (143)
®(+,00°Y = Bwr+w (144)
(145)
Interlacing the FLC allows us to eliminate &:
S [I(+ )N (+, )97 ]
P = = tan(2£ +20+0© 14
R(I(r, )0V I(+, 1)oFF] — 00 (1)
S [T+, 0/ I(+, )]
AD = = tan(20 — © 147
R [1(+,+)ON /I(+,+)OF ] an(26 —6) (147)
(148)
So what actualy is £777
¢ = +Pwr+ yw + awy (149)
= wlBzx+ay+7) (150)
(151)

14
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For I(+,0) (FLC off):

8I(4,0) = +2syexpi(+Pwr +qw)
= +2s2expiy
8I(+,+)°FF = —(s1+is3) expi(+Bwz + awy + Yw)
= —(s1+1is3)expif
o= —sicos&+sysing
3 —s1sin§ — sgcos§
fand — 3 sisin€tsgcose  tanit 3

RN spcosé —sgsiné 1—?—?tan§

tanf—i— tan 2x

_ cos 26
[
= tan({ + D)

11 MSE Geometry without the trig!!

Define vectors:
B Magnetic field.
v; Velocity vector for beam 1.
1 Unit vector of pixel’s line of sight.
U Unit vector defining 'up’ for a pixel. Perp to 1 but otherwise free.
T Defines right’. T = 1 X 1.
Lorentz electric field, has direction of 7 components:

E=v xB.

We define the raw polarisation angle 6 as the angle from the LOS up u:

(v xB) -

tanf = W

[=> 1>

Break B into the global Tokamak polar coordinates (E, é, Z)

B = BgR+BzZ+ By
vxB = (vxR)Br+ (vxZ)Byz+ (vx ¢)By
(X i)qu“’(XXE‘i BR+(X><Z'i)BZ
tanf =

X
(vxé-0)By+ (vxRit) B+ (vx 2 ) By
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(163)
(164)

(165)

(166)
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Divide through by (y X é . Q):

tanf = (!Xé'ﬁ)+(yx3-ﬁ)%+(yx%-ﬁ)% (167)
(yx¢-1) (¥x¢-d)7° (vxg¢-0)~
. . 1
(KXE'Q)& (vx2Z Q)&
X 1+(¥xé.® B¢+(yxg2 9 BJ (168)
For normal plasmas, we can assume %f < g—i << 1.
Binomial expand and drop terms in (Bgé Z)2;
tanf = w (169)
(vx¢-0)
p|axBeD x9D) xR D)) g, (170)
(vx¢-0) (vxg¢-0)(vxg-a)] ™
N (yxgﬁ)_(yxg?-i)(yx;@) B2 )
(vxo¢-1) (vx¢-0)(vxo-u)| ~°
= apt +bFE +e (172)

With a choice of G that gets the image average as close as possible for beam Q3, AUG
modelling (using measured camera view) gives, on average:

173
174

tanfy &~ 0.0247% + 0.408 5% +0.179 (173)
tanfy ~ 0.057%1; + 0.605% +0.193 (174)
tanfs ~ 0.055%{; + 0.584%; —0.001 (175)
tanf, ~ 0.037%{; + 0.399%5 —0.003 (176)

(177)

The measured angle has some unknown offset from any arbitrary choice of Gi: 8" = 6 + 6. If
we have measurements with two beams, the differece removes that offset. With the same choice
of 11, so that ¢3 ~ 0:

tan(@, — 0,) = tan(6; — ;) = (178)
(@ — az) B2 + (b — b3) B2 + (i — c3)

= Br ¢Bz B(; Bz (179)

1+ (aide’ + bide) + Ci)(a3?¢ + bngd) + ¢3)
(%-%)%{;—f—(@ —bs)%i—i—ci (180)

- ]-+Cia3%§ +Cib3%

~ (ai — as — C?ag)%g‘ + (bl — b3 + C?bg)%ﬁ + ¢ (181)
(182)
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183
184

185
186

tan(f; —03) ~0.179  —0.033F% —0.1957% (183)
tan(6y — 03) ~ 0.193 +0.001 52 (184)
tan(f} — 03) ~ —0.003 —0.0187%  —0.1857% (185)
(186)

Which appears to suggest that beams 2 and 3 should always have the same difference - 11°,
independent of the magnetic field, choice of 1, or instrumental offsets. This is reasonable, since
they have roughly the same but opposite inclination to the horizontal plane, with all the other
vectors roughly the same. However, you’d expect the difference to be 8.2° - twice the inclination
angle.

The difference between beams 4 and 3, both of which are nicely in view, given a more di-
rect measurement of %i, independent of instrumental offsets, and without any signifcant raw
difference between the angle - which reduces errors due to the non-linear intrinsic contrast cali-
bration (u). In principle, separating %: might even be possible, but is probably well beyond the
sensitivity available.
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