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1.1 The Linear Gaussian Inversion [DONE1]

The linear Gaussian inversion (LGI)[Jakob: do you have you an original ref?] is an extremely

useful numerical tool used in a specific situation to calculate the posterior distribution in a single

relatively simple operation. Although occurances of the exact conditions are rare, many problems

can be well approximated in a compatible way.

The method is applicable when the likelihood of the data vector D can be expressed as

a multivariate Gaussian with some known covariance σD, and that the mean D0 is a known

linear combination of the unknown parameters D0 = M µ. The response matrix M is the linear

forward function in this case. The final requirement is that the prior must also be expressed as

multivariate Gaussian with mean µp and covariance σp:
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Through Bayes theorem, the posterior, with an arbitary normalisation constant C1 is:

P
(
µ |D

)
∝ P

(
D | µ

)
P
(
µ
)

∝ G
(

D; M µ, σD

)
G
(
µ; µp, σp

)
logP

(
µ |D

)
= − 1

2

(
D−M µ

)T
σD
−1 (D−M µ

)
(1.3)

− 1
2

(
µ− µp

)T
σp
−1
(
µ− µp

)
+ C1

Since the posterior is a multiplication of the two Gaussians, it can be written as a single

Gaussian with mean µ0 and covariance σ:

P
(
µ |D

)
∝ G

(
µ; µ0, σ

)
logP

(
µ |D

)
= − 1

2

(
µ− µ0

)T
σ−1

(
µ− µ0

)
+ C2 (1.4)

4



(snapshot - nightly build) July 19, 2010

Expanding equations 1.3 and 1.4 and equating like terms in µ:

µTσ−1µ = µT
[
MTσD

−1M + σp
−1
]
µ (1.5)
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]
µ (1.6)
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From equations 1.6 and 1.7, the posterior mean and covariance are:

σ =
[
MTσD

−1M + σp
−1
]−1

(1.9)

µ0 = σ
[
MTσD

−1D + σp
−1µp

]
(1.10)

The power of the method can be seen in these last two equations - that the full mean and

covariance of the posterior distribution can be calculated in a single matrix inversion given the

inverse covariances of the prior and likelihood distributions and the response matrix.

In general (where the LGI conditions are not met), the posterior maximum is found by

iterative numerical algorithms and the shape and extent investigated by the drawing random

samples, a procedure which usually involves a gradual random walk. Both of these processes can

take many thousands of times the parameter dimensionality of forward function evaluations to

complete and for very high dimensionality (N(µ) >∼ 200) becomes prohibitively expensive.

For the LGI, the maximum posterior µ0 is immediately avaiable and the drawing of random

samples from a multivariate Gaussian is a well known, relatively trivial proceedure. With the

general methods, the marginal distribution for a given subset of the parameters is calculated

by the random walk algorithms. Here, the marginal distributions for each parameter are 1D

Gaussians with variances given by the reciprocal of the diagonal elements of σ.

1.1.1 Practical Application and Parallel Implementation

Often, the forward function is easily written as a linear combination of the parameters and

the coefficients are used to directly construct M. For more complex cases, M is found by first
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calculating the data Di for some initial set of parameters µi about which the forward function

is assumed linear. Each parameter in turn is then modified and the relevant row of M filled

with the difference between the new predicted data and Di. The calculation requires only one

evaluation of the forward function for each parameter so is relativly low cost.

However, in some cases this work requires repeated application of the LGI to very large

problems (N(µ) ∼ N(D) > 4000) with relatively slow forward functions (t ∼ 100ms). To

reduce the inversion time, a general parallel implementation of the LGI was developed. The

determination of M is ideally suited to this since each machine can independantly calculate

a selection of the rows. Once complete, M is distributed over the involved machines so after

distribution of σD
−1, σp

−1 and µp, equations 1.9 and 1.10 are performed using freely avalaible

parallel matrix libraries (PBLAS, BLACS, scaLAPACK [1], [2]). The developed software allows

the calculation of such large problems in a few minutes, where the serial implemention can take

hours.

1.1.2 Truncated Gaussians

In many cases where the priors are not Gaussian, they can be easily represented as truncated

Gaussians. Typical examples are densities and temperatures where parameters are restricted to

being positive P (ne) = 0 for ne < 0. In such cases, the LGI proceedure is applied as if the

truncations were not present and the truncation simply applied directly to the posterior (There

should also be a modification to the normalisation, but the correct normalisation of the posterior

is rarely of any practical use).

If the Gaussian centre lies inside the truncation limits so P (µ0) 6= 0 then it is the posterior

maximum, otherwise the maximum will lie somewhere on one of the truncation hyper-planes and

must be found by one of the general iterative algorithms.

The best known way of drawing random samples from the truncated posterior is a Monte-

Carlo process, so is much slower than in the standard LGI, but it is much less costly than

the general Monte-Carlo methods. The proceedure is based on the Gibbs-sampler [Jakob: do

you have a ref for Gibbs in general??] where a random sample is drawn from the conditional

distribution over one parameter given the current position in all others P (µi |µj 6=i). The sampler
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moves to the position in µi of the sample and the procedure is repeated for each parameter in

turn. The whole process repeated many times so that position, moving in steps along each axis,

gradually explores the entire joint distribution.

The proceedure is favourable for the truncated multivariate Gaussian because the conditional

distributions are always truncated univariate Guassians whose mean and variance are easily

calcuated from µ0 and σ and methods exist to efficiently draw samples from these[3], so the overall

proceedure is fairly efficient. While this has been done previously[4], the posteriors in this work

are often very highly correlated making the parameter-by-parameter Gibbs sampling relativly

slow to move along the correlations. To mitigate this, a new Gibbs-sampler was developed where

each step is taken along the next eigenvector of σ. The variance of the conditional along this

line (still univariate Gaussian) is given by the associated eigenvalue. The distance along the line

where it intersects the truncation hyper-plane on each real parameter is found and the most

constrictive of these give the limits on that conditional. For the situations where it is used in

this work, the proceedure is significantly more efficient than that in [4].

The principal behind both the existing (parameter-space aligned) and the eigenvector aligned

methods are shown in figure 1.1.

Figure 1.1: The principal of the Gibbs-sampler applied to a 2D truncated Gaussian using a)
parameter-space aligned conditionals/steps as in [4] and b) using eigenvector aligned conditionals
as in this work. The green arrowed lines show some arbitary example jumps and the 1D graphs
show the conditional PDFs for one them in each case. µ are the paremeters and E the eigenvectors
of the Gaussian covariance.
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