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But, all possible profiles 
show structure we do not 
believe, so an assumption 
must be incorrect:
ψN not perfect?
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Instead, calculate ψN from toroidal currents J, include magnetics diagnostics and invert to full posterior:
i.e: Find combinations of J and ne that are consistent with both interferometry and magnetics (and with ne and J priors). 

J

Density profiles look 
better, but we also 
have a PDF of J.
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Interferometry combined with ne assumptions 
provides some information about plasma current: 
i.e: Some currents give flux surfaces for which no ne 
profile can make interferometry data make sense.

Less obviously, gives higher 
certainty magnetic axis 
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Created full detailed forward model including every part of the system:

Stray light effects low signal 
(low ne) data on both systems 
but is vital for proper edge 
LIDAR analysis.
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So how do we deal with disagreement with other diagnostics?
   Solution 1: Shift and scale output profiles to match...
       Which diagnostic should we trust, can we remember which ones are reliable for which quantities.
       What if calibrations effect profiles in complex ways?
   Solution 2: Build the model for each and wire up to minerva, tell
               it what we do know about the calibration parameters (the prior).
               and let it work out how to make everything consistent.       
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Photomultipliers, Counting Noise (PDFs), ADCs.

Collection
Mirrors

Scattering
Point

Laser

Plasma volume

Laser Input
Mirror

Laser Path
(Line of Sight)

Z / m

R / m

19.4
17.0

2.1

0

1.73 4.2 7.7 8.9 11.6

Beam Dump

Timing Pulse
Optic Fibre ~40m

Detectors

Vacuum Vessel Windows:
6 Collection Windows

Central laser 
input window

Nam

Nso

Npl
NbwNtp

Abl

Pre-switch on gegion Post-switch on,
Non-plasma region

Plasma TS region

−10 −5 0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Profile, FWHM = 4.15615 +/− 0.591337

X (mean scale)

JetMagnetics

Pickup Coils

Saddle Coils

Flux Loops

ne

Te

LidarTSSystem-ke3-core

SignalComponentsContainer_1

CalibrationsContainer_1

Pickup predictions Pickup observations

Saddle predictions Saddle observations

Fluxloop predictions Fluxloop observations

JET Magnetics Data Source

MagneticsIron Currents

SimulatedBeamSet

JET Magnetic diagnostics data source

JET pickup coil data

JET saddle coil data

JET fluxloop data

Pickups bias

Saddles bias

Fluxloops bias

PoloidalFluxGrid

FluxContouringOps

interp2DR

Cubic2DParameterisedCurrent

interp2DZ

interp2DJ0Min

currents

inter2DJ0Max

interp2DJ0Mean

interp2DJ0Sigma2

interp2dJ

FluxMapWithPrivateRegion

QProfile

ne_func

Te_func

ne_cfg
ne_prof

ne_par

neMTanh

sum-TanhPlusInterp_1

mtanhFirstDiffConstraint_1

mtanhSecondDiffConstraint_1

ModifiedTanhProfileConfig_1

tanhPsi0_1

tanhWidth_1

tanhHeight_1

tanhOffset_1

PhotoElectronPlasmaSignal_1

Te_cfg
Te_prof

Te_par

TeMTanh

sum-TanhPlusInterp_2

mtanhFirstDiffConstraint_2

mtanhSecondDiffConstraint_2

ModifiedTanhProfileConfig_2

tanhPsi0_2

tanhWidth_2

tanhHeight_2

tanhOffset_2

GaussianPeaksStrayLight_1 nonPlasmaSignal_1 ADCSignal_1

baselineX0_1

baselineY0_1

baselineA_1

tpulseX0_1

PlasmaSignalOnADCTimebase_1

tpulseY0_1

tpulseA_1

switchOnX0_1

switchOnY0_1

switchOnA_1

ambientLevel_1

ambientBeginX_1

backwallX0_1

backwallA_1

backwallScaleLength_1

strayLightA_1

strayLightX_1

strayLightW_1

uberConst_1

relativeSensitivity_1

timingAdjust_1

laserWidthAdjust_1 instrumentFunctions_1

tpulseToBackwallTime_1

vignetShift_1

vignetAdjustGrad_1

vignettingProfile_1

MinervaLidarDataSource-KE3CoreLIDAR

LidarConfigSource_1

ThomsonScatteringTable_1

observations_1

First wall

time

pulse

ADCSignal_1 observations_1

CalibrationsContainer_1

uberConst_1

relativeSensitivity_1

timingAdjust_1

laserWidthAdjust_1

tpulseToBackwallTime_1

vignetShift_1

vignetAdjustGrad_1

vignettingProfile_1

SignalComponentsContainer_1

GaussianPeaksStrayLight_1 nonPlasmaSignal_1

baselineX0_1

baselineY0_1

baselineA_1

tpulseX0_1

tpulseY0_1

tpulseA_1

switchOnX0_1

switchOnY0_1

switchOnA_1

ambientLevel_1

ambientBeginX_1

backwallX0_1

backwallA_1

backwallScaleLength_1

strayLightA_1

strayLightX_1

strayLightW_1



A typical high density H-mode pulse:
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A typical high density H-mode pulse:
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A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)
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A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)

3.79 3.81 3.83 3.85

0.5

1.0

Rmag

T
  
 /
 k

e
V

e

3.79 3.81 3.83 3.85
Rmag

0.0

LidarTSSystem-ke3-core

ne

Te

SignalComponentsContainer_1

CalibrationsContainer_1

ne_func

Te_func

ne_cfg
ne_prof

ne_par

neMTanh

sum-TanhPlusInterp_1

mtanhFirstDiffConstraint_1

mtanhSecondDiffConstraint_1

ModifiedTanhProfileConfig_1

tanhPsi0_1

tanhWidth_1

tanhHeight_1

tanhOffset_1

PhotoElectronPlasmaSignal_1

Te_cfg
Te_prof

Te_par

TeMTanh

sum-TanhPlusInterp_2

mtanhFirstDiffConstraint_2

mtanhSecondDiffConstraint_2

ModifiedTanhProfileConfig_2

tanhPsi0_2

tanhWidth_2

tanhHeight_2

tanhOffset_2

GaussianPeaksStrayLight_1 nonPlasmaSignal_1 ADCSignal_1

baselineX0_1

baselineY0_1

baselineA_1

tpulseX0_1

PlasmaSignalOnADCTimebase_1

tpulseY0_1

tpulseA_1

switchOnX0_1

switchOnY0_1

switchOnA_1

ambientLevel_1

ambientBeginX_1

backwallX0_1

backwallA_1

backwallScaleLength_1

strayLightA_1

strayLightX_1

strayLightW_1

uberConst_1

relativeSensitivity_1

timingAdjust_1

laserWidthAdjust_1 instrumentFunctions_1

tpulseToBackwallTime_1

vignetShift_1

vignetAdjustGrad_1

vignettingProfile_1

MinervaLidarDataSource-KE3CoreLIDAR

LidarConfigSource_1

ThomsonScatteringTable_1

observations_1

pulse

time

Te

ne

Core
LIDAR

EFIT
If, for some reason, you are reading this in
 detail, the EFIT bit is made up because I 
didn't have time to go generate the real graph.
Also, these are the mtanh modules, but the 
knotProfile nodes were used directly for the
MCMC runs on the left.

ne

Te

Te
Chain1 Edge 
LIDAR

High Resolution Thomson Scattering

Electron Cyclotron Emission

Core LIDAR Standard Analysis

0.0

2.0

4.0

6.0

8.0

1.0

1.2

0.0

1.0

2.0

3.0

n 
   

/ 1
0 

   
m

-3
e

19
T 

  /
 k

eV
e

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0 ψ
N

ψ
N

a)

b) d)

c)

Edge LIDAR Standard Analysis



A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)
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A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)
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A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)
- Give all calibrations some uncertainty (what we believe).
- Give some less trusted calibrations almost complete freedom (uniform prior).
- Throw the complete problem at the GA for MAP (best fit) and 
then at the MCMC for distribution...
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A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)
- Give all calibrations some uncertainty (what we believe).
- Give some less trusted calibrations almost complete freedom (uniform prior).
- Throw the complete problem at the GA for MAP (best fit) and 
then at the MCMC for distribution...
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A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)
- Give all calibrations some uncertainty (what we believe).
- Give some less trusted calibrations almost complete freedom (uniform prior).
- Throw the complete problem at the GA for MAP (best fit) and 
then at the MCMC for distribution...
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Clear that result is much more 
accuracte than using fixed calibration 
values.

With completely free calibration, edge 
LIDAR provides shape with which Core 
LIDAR can give accurate Te ped height 
which feeds back to Edge LIDAR 

But, this isn't complete - we are still using 
fixed flux surfaces. The Current tomography 
without equilibirum approach is useful but 
can we get more by assuming equilibrium...



So mapping P( ψN | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)



So mapping P( ψN | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)

However, equilibrium condition may give enough constraint.

NB: It's not immediately clear how restrictive force balance (GS equation) actually is, since it is almost 
always used with strong prior constraints on p' (or p - the equilibirum pressure) and ff' 
(or f - the poloidal current flux). With weak (almost no) contraints on p' and ff', degeneracy of solutions 
is still huge.



So mapping P( ψN | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)

However, equilibrium condition may give enough constraint.

NB: It's not immediately clear how restrictive force balance (GS equation) actually is, since it is almost 
always used with strong prior constraints on p' (or p - the equilibirum pressure) and ff' 
(or f - the poloidal current flux). With weak (almost no) contraints on p' and ff', degeneracy of solutions 
is still huge.

Assume GS equality is, at least close to correct: assign a PDF on difference:
      P( J, p', ff') = G( J - Rp' - ff'/R;   0,   σ

GS
) with relativly small σGS.

The posterior P( J, p', ff' | Ddiags + ~Equilibrium) should include all possible 
combinations of J, p' and ff' that are consistent with the diagnostics, the priors and describe a plasma 
very close to equilbrium.



So mapping P( ψN | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)

However, equilibrium condition may give enough constraint.

NB: It's not immediately clear how restrictive force balance (GS equation) actually is, since it is almost 
always used with strong prior constraints on p' (or p - the equilibirum pressure) and ff' 
(or f - the poloidal current flux). With weak (almost no) contraints on p' and ff', degeneracy of solutions 
is still huge.

Assume GS equality is, at least close to correct: assign a PDF on difference:
      P( J, p', ff') = G( J - Rp' - ff'/R;   0,   σ

GS
) with relativly small σGS.

The posterior P( J, p', ff' | Ddiags + ~Equilibrium) should include all possible 
combinations of J, p' and ff' that are consistent with the diagnostics, the priors and describe a plasma 
very close to equilbrium.

Adding to model (and the code) is fairly trivial: 

PoloidalFluxGrid FluxContouringOps QProfile

Magnetics
Plasma Beam Currents



So mapping P( ψN | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)

However, equilibrium condition may give enough constraint.

NB: It's not immediately clear how restrictive force balance (GS equation) actually is, since it is almost 
always used with strong prior constraints on p' (or p - the equilibirum pressure) and ff' 
(or f - the poloidal current flux). With weak (almost no) contraints on p' and ff', degeneracy of solutions 
is still huge.

Assume GS equality is, at least close to correct: assign a PDF on difference:
      P( J, p', ff') = G( J - Rp' - ff'/R;   0,   σ

GS
) with relativly small σGS.

The posterior P( J, p', ff' | Ddiags + ~Equilibrium) should include all possible 
combinations of J, p' and ff' that are consistent with the diagnostics, the priors and describe a plasma 
very close to equilbrium.

Adding to model (and the code) is fairly trivial: JetEquilibriumTest

pprime

ffprime

Equilibrium test on beamset

PoloidalFluxGrid FluxContouringOps

PoloidalCurrentFluxFromDifferential

QProfile

pprime_cfg
pprime_prof

pprime_par

ffprime_cfg
ffprime_prof

ffprime_par

equiConstraint

Magnetics
Plasma Beam Currents



So mapping P( ψN | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)

However, equilibrium condition may give enough constraint.

NB: It's not immediately clear how restrictive force balance (GS equation) actually is, since it is almost 
always used with strong prior constraints on p' (or p - the equilibirum pressure) and ff' 
(or f - the poloidal current flux). With weak (almost no) contraints on p' and ff', degeneracy of solutions 
is still huge.

Assume GS equality is, at least close to correct: assign a PDF on difference:
      P( J, p', ff') = G( J - Rp' - ff'/R;   0,   σ

GS
) with relativly small σGS.

The posterior P( J, p', ff' | Ddiags + ~Equilibrium) should include all possible 
combinations of J, p' and ff' that are consistent with the diagnostics, the priors and describe a plasma 
very close to equilbrium.

Adding to model (and the code) is fairly trivial: JetEquilibriumTest

pprime

ffprime

Equilibrium test on beamset

PoloidalFluxGrid FluxContouringOps

PoloidalCurrentFluxFromDifferential

QProfile

pprime_cfg
pprime_prof

pprime_par

ffprime_cfg
ffprime_prof

ffprime_par

equiConstraint

Magnetics
Plasma Beam Currents

ff'(ψN)

p'(ψN) equiConstraint

Plasma Beam Currents



So mapping P( ψN | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)

However, equilibrium condition may give enough constraint.

NB: It's not immediately clear how restrictive force balance (GS equation) actually is, since it is almost 
always used with strong prior constraints on p' (or p - the equilibirum pressure) and ff' 
(or f - the poloidal current flux). With weak (almost no) contraints on p' and ff', degeneracy of solutions 
is still huge.

Assume GS equality is, at least close to correct: assign a PDF on difference:
      P( J, p', ff') = G( J - Rp' - ff'/R;   0,   σ

GS
) with relativly small σGS.

The posterior P( J, p', ff' | Ddiags + ~Equilibrium) should include all possible 
combinations of J, p' and ff' that are consistent with the diagnostics, the priors and describe a plasma 
very close to equilbrium.

Adding to model (and the code) is fairly trivial: JetEquilibriumTest

pprime

ffprime

Equilibrium test on beamset

PoloidalFluxGrid FluxContouringOps

PoloidalCurrentFluxFromDifferential

QProfile

pprime_cfg
pprime_prof

pprime_par

ffprime_cfg
ffprime_prof

ffprime_par

equiConstraint

Magnetics

But, the problem is now very hard for the 
external algorithms to handle due to non-linera 
1000D+ posterior.

1) Parallelise the linear solver and iterate to find
    MAP (much slower but more stable than EFIT).

2) Exporing the PDF only just possible 
(last week). Plasma Beam Currents

ff'(ψN)

p'(ψN) equiConstraint

Plasma Beam Currents



78601 High ne 
H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.



78601 High ne 
H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.



78601 High ne 
H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   

LCFS etc not really 
influenced by exactly 
where high-res 
beams are.



P'

0.0 0.5 1.0

78601 High ne 
H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
                               Fairly strong prior for small SOL p' and ff' (but not fixed)
                               Has anyone measured JSOL?

LCFS etc not really 
influenced by exactly 
where high-res 
beams are.



2.0 2.5 3.0 3.5 4.02.0 2.5 3.0 3.5 4.0

P'

0

40

80

120

0.0 0.5 1.0

P / kPa

140

PRELIMINARY RESULTS

EFIT (mags) P

EFIT P'

Equi P

78601 High ne 
H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
                               Fairly strong prior for small SOL p' and ff' (but not fixed)
                               Has anyone measured JSOL?
Clearly massively degenerate, so adjust p' and ff' priors to get something
sensible for 1 time slice:

LCFS etc not really 
influenced by exactly 
where high-res 
beams are.

-1.2

-0.8

-0.4

0.0
J(Rmag)

S
e
p
e
ra

tr
ix

S
e
p
e
ra

tr
ixPRELIMINARY RESULTS

Rmag



2.0 2.5 3.0 3.5 4.02.0 2.5 3.0 3.5 4.0

P'

0

40

80

120

0.0 0.5 1.0

P / kPa

140

PRELIMINARY RESULTS

2*HRTS Pe

EFIT (mags) P

EFIT P'

Equi P

78601 High ne 
H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
                               Fairly strong prior for small SOL p' and ff' (but not fixed)
                               Has anyone measured JSOL?
Clearly massively degenerate, so adjust p' and ff' priors to get something
sensible for 1 time slice:

LCFS etc not really 
influenced by exactly 
where high-res 
beams are.

-1.2

-0.8

-0.4

0.0
J(Rmag)

S
e
p
e
ra

tr
ix

S
e
p
e
ra

tr
ixPRELIMINARY RESULTS

Rmag



2.0 2.5 3.0 3.5 4.02.0 2.5 3.0 3.5 4.0

P'

0

40

80

120

0.0 0.5 1.0

P / kPa

140

PRELIMINARY RESULTS

2*HRTS Pe

EFIT (mags) P

EFIT P'

Equi P

78601 High ne 
H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
                               Fairly strong prior for small SOL p' and ff' (but not fixed)
                               Has anyone measured JSOL?
Clearly massively degenerate, so adjust p' and ff' priors to get something
sensible for 1 time slice:

LCFS etc not really 
influenced by exactly 
where high-res 
beams are.

-1.2

-0.8

-0.4

0.0
J(Rmag)

S
e
p
e
ra

tr
ix

S
e
p
e
ra

tr
ixPRELIMINARY RESULTS

Magnetics data seems to see edge current (and hence some p').
Exact magnitude you get does depend on priors.

Rmag



2.0 2.5 3.0 3.5 4.02.0 2.5 3.0 3.5 4.0

P'

0

40

80

120

0.0 0.5 1.0

P / kPa

140

PRELIMINARY RESULTS

2*HRTS Pe

EFIT (mags) P

EFIT P'

Equi P

78601 High ne 
H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
                               Fairly strong prior for small SOL p' and ff' (but not fixed)
                               Has anyone measured JSOL?
Clearly massively degenerate, so adjust p' and ff' priors to get something
sensible for 1 time slice:

LCFS etc not really 
influenced by exactly 
where high-res 
beams are.

-1.2

-0.8

-0.4

0.0
J(Rmag)

S
e
p
e
ra

tr
ix

S
e
p
e
ra

tr
ixPRELIMINARY RESULTS

Magnetics data seems to see edge current (and hence some p').
Exact magnitude you get does depend on priors.
But... Hold priors and run accross H-mode pulse. Is there any vague trend?

Rmag



2.0 2.5 3.0 3.5 4.02.0 2.5 3.0 3.5 4.0

5000

10000

15000

20000

25000

30000

35000

52 54 56 58 60 62 64

PRELIM
INARY RESULTS

Magnetics + Equilibrium
Max. Post. Pedestal P

2 * HRTS 
Pe Ped

Pe
d

e
st

a
l 
P
re

ss
u

re
 (

ψ
N
 =

 8
5

%
)

P'

0

40

80

120

0.0 0.5 1.0

P / kPa

140

PRELIMINARY RESULTS

2*HRTS Pe

EFIT (mags) P

EFIT P'

Equi P

78601 High ne 
H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
                               Fairly strong prior for small SOL p' and ff' (but not fixed)
                               Has anyone measured JSOL?
Clearly massively degenerate, so adjust p' and ff' priors to get something
sensible for 1 time slice:

LCFS etc not really 
influenced by exactly 
where high-res 
beams are.

-1.2

-0.8

-0.4

0.0
J(Rmag)

S
e
p
e
ra

tr
ix

S
e
p
e
ra

tr
ixPRELIMINARY RESULTS

Magnetics data seems to see edge current (and hence some p').
Exact magnitude you get does depend on priors.
But... Hold priors and run accross H-mode pulse. Is there any vague trend?

Rmag



2.0 2.5 3.0 3.5 4.02.0 2.5 3.0 3.5 4.0

15000

20000

25000

30000

35000

57.0 57.5 58.0 58.5 59.0 59.5

PRELIM
INARY RESULTS

5000

10000

15000

20000

25000

30000

35000

52 54 56 58 60 62 64

PRELIM
INARY RESULTS

Magnetics + Equilibrium
Max. Post. Pedestal P

2 * HRTS 
Pe Ped

Pe
d

e
st

a
l 
P
re

ss
u

re
 (

ψ
N
 =

 8
5

%
)

During inter-ELM 
build up.

P'

0

40

80

120

0.0 0.5 1.0

P / kPa

140

PRELIMINARY RESULTS

2*HRTS Pe

EFIT (mags) P

EFIT P'

Equi P

78601 High ne 
H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
                               Fairly strong prior for small SOL p' and ff' (but not fixed)
                               Has anyone measured JSOL?
Clearly massively degenerate, so adjust p' and ff' priors to get something
sensible for 1 time slice:

LCFS etc not really 
influenced by exactly 
where high-res 
beams are.
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Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
                               Fairly strong prior for small SOL p' and ff' (but not fixed)
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Magnetics data seems to see edge current (and hence some p').
Exact magnitude you get does depend on priors.
But... Hold priors and run accross H-mode pulse. Is there any vague trend?
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Follows trends AND maintains 
surprisingly good magnitude. 
Suggests there is a quite lot of 
info in magnetics!
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   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
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Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
                               Fairly strong prior for small SOL p' and ff' (but not fixed)
                               Has anyone measured JSOL?
Clearly massively degenerate, so adjust p' and ff' priors to get something
sensible for 1 time slice:
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where high-res 
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Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
                               Fairly strong prior for small SOL p' and ff' (but not fixed)
                               Has anyone measured JSOL?
Clearly massively degenerate, so adjust p' and ff' priors to get something
sensible for 1 time slice:
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Exact magnitude you get does depend on priors.
But... Hold priors and run accross H-mode pulse. Is there any vague trend?
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Suggests there is a quite lot of 
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Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
                               Fairly strong prior for small SOL p' and ff' (but not fixed)
                               Has anyone measured JSOL?
Clearly massively degenerate, so adjust p' and ff' priors to get something
sensible for 1 time slice:
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But... Hold priors and run accross H-mode pulse. Is there any vague trend?
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Because of modularity, we can switch parametrisation and priors of J, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so:
   Jϕ:   Current beams with higher resolution near edge (~1cm, ~5cm in core).
              No smoothing priors, just Jϕ < 100MA m-2.
   p'( ψN ), ff'( ψN ):   20 knots, weak smoothing priors.
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Clearly massively degenerate, so adjust p' and ff' priors to get something
sensible for 1 time slice:

LCFS etc not really 
influenced by exactly 
where high-res 
beams are.

-1.2

-0.8

-0.4

0.0
J(Rmag)

S
e
p
e
ra

tr
ix

S
e
p
e
ra

tr
ixPRELIMINARY RESULTS

Magnetics data seems to see edge current (and hence some p').
Exact magnitude you get does depend on priors.
But... Hold priors and run accross H-mode pulse. Is there any vague trend?
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Follows trends AND maintains 
surprisingly good magnitude. 
Suggests there is a quite lot of 
info in magnetics!
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With the high-res beams, the posterior is 4732D. This is far too much for the 
MCMC algorithm (as it stands). So, for the moment, use a lower res (5cm beams).
Also, we need to allow a little more flexibility in GS difference (~1% of Jϕ) so it can explore.
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Of course, we can see how other diagnostics reduce this uncertainty, just by
adding their forward model to the system and running it again.
This will be good for the obvious cases: MSE, Polarimetry etc, but maybe
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Also, we need to allow a little more flexibility in GS difference (~1% of Jϕ) so it can explore.
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We can add a prior for monotonic P (-ve P'):
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Beam resolution could be too low to
really see what it says about pedestal

Of course, we can see how other diagnostics reduce this uncertainty, just by
adding their forward model to the system and running it again.
This will be good for the obvious cases: MSE, Polarimetry etc, but maybe
others too. e.g Interferometry and Edge LIDAR.

All of this still needs lots of investigating and validating...
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Can we test pedestal scaling from edge LIDAR just with uncertain mapping (CT).
[Have 7000 time points, type-I ELMy H-Mode, marked and clear of ELMS since Edge LIDAR upgrade C20-C27 ]

Do we get enough info to test current models at edge?

?
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