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(Best fit and PDF (Non-linear best fit)
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Write nodes and wire them together.
Software framework handles the rest.
Even automatically generates the graphical representation.

We can re-wire the graph and redefine/modify the problem
at will, even during a run.

Parts previously written:

Magnetics (field/flux calculations and JET magnetics)
Interferometry.

Parts I've written as part of my PhD:
Polarimetry

Core LIDAR

Edge LIDAR

Equilibrium (Grad-Shafranov Test)

Various Ne/Te profile models.

+(Parallelised and developed outer algorithms)

Other parts written during the past 3 years:
JET MSE

JET Reflectometry

JET Infrared strikepoint camera
MAST Magnetics

MAST MSE

MAST Thomson Scattering

... and a few others ...
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Thomson Scattering diagnostics each using a single spectrometer set and time of flight for positioning.

TS physics well understood but hardware system very complex.

Spatial Resolution:

Effective convolution of light signal.
If ignored (chainl): Convolves n. but complex effect on 7.

No problem for forward modelling: we just convolve the signal.
Calibrations:

Beam dump position + timing --> Uncertain position.
Optical transmission + laser energy --> ne magnitude.
Spectrometer Relative Sensitivities --> T magnitude.

Relative Channel timing --> T, + n, shape!

Created full detailed forward model including every part of the system:

+Calibration Feedback Light +Stray Light

Data +Plasma TS Light

N

+PMT switch-on
effects

Stray light effects low signal
(low ne) data on both systems
but is vital for proper edge
LIDAR analysis.

+Beam dump light.

Electronic Baseline

time / ns
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So how do we deal with disagreement with other diagnostics?

Solution 1: Shift and scale output profiles to match...
Which diagnostic should we trust, can we remember which ones are reliable for which quantities.

What if calibrations effect profiles in complex ways?
Solution 2: Build the model for each and wire up to minerva, tell
it what we do know about the calibration parameters (the prior).

and let it work out how to make everything consistent.

We must really understand how each part of the

system works:
Laser Pulse, TS physics, Optics, Filters,
Photomultipliers, Counting Noise (PDFs), ADCs.
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So how do we deal with disagreement with other diagnostics?
Solution 1: Shift and scale output profiles to match...
Which diagnostic should we trust, can we remember which ones are reliable for which quantities.
What if calibrations effect profiles in complex ways?
Solution 2: Build the model for each and wire up to minerva, tell
it what we do know about the calibration parameters (the prior).
and let it work out how to make everything consistent.

We must really understand how each part of the

system works:

Laser Pulse, TS physics, Optics, Filters,

Photomultipliers, Counting Noise (PDFs), ADCs.
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inalysis of Electron Kinetic Profiles, Imperial College
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Core + Edge LIDAR |: The model

So how do we deal with disagreement with other diagnostics?
Solution 1: Shift and scale output profiles to match...
Which diagnostic should we trust, can we remember which ones are reliabl
What if calibrations effect profiles in complex wa
Solution 2: Build the model for each and wire up to
it what we do know about the calibration pa
and let it work out how to make everything 'e

r which quantities.
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We must really understand how each part of the
system works:

Laser Pulse, TS physics, Optics, Filters,
Photomultipliers, Counting Noise (PDFs), ADCs.
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Core + Edge LIDAR |: The model

So how do we deal with disagreement with other diagnostics?
Solution 1: Shift and scale output profiles to match...
Which diagnostic should we trust, can we remem
What if calibrations effect profiles in complex wa
Solution 2: Build the model for each and wire up to
it what we do know about the calibration pa

and let it work out how to make everything'c

Ttities.

We must really understand how each part of the
system works:

Laser Pulse, TS physics, Optics, Filters,
Photomultipliers, Counting Noise (PDFs), ADCs.
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8n Analysis of Electron Kinetic Profiles. Imperial College

Core + Edge LIDAR V: Add edge LIDAR.
A typical high density H-mode pulse:

% Core LIDAR Standard Analysis

Edge LIDAR Standard Analysis =
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Core + Edge LIDAR V: Add edge LIDAR.
A typical high density H-mode pulse:

1.2
1a) % Core LIDAR Standard Analysis
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an Analysis of Electron Kinetic Profiles. Imperial CO"EQE

Core + Edge LIDAR V: Add edge LIDAR.

A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)

1.2
1a) % Core LIDAR Standard Analysis
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8n Analysis of Electron Kinetic Profiles. Imperial College

Core + Edge LIDAR V: Add edge LIDAR.

A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)

Jja) % Core LIDAR Standard Analysis
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Core + dge LIDAR V: Add edge LIDAR.

A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)
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Core + dge LIDAR V: Add edge LIDAR.

A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)

1a) x Core LIDAR Standard Analysis
1.0-
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6.0
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gsian Analysis of Electron Kinetic Profiles. Imperial CO"EQE

e

Core + dge LIDAR V: Add edge LIDAR.

A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)
- Give all calibrations some uncertainty (what we believe).

- Give some less trusted calibrations almost complete freedom (uniform prior). ;

- Throw the complete problem at the GA for MAP (best fit) and - S —

then at the MCMC for distribution... =

1.2 ——
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2803 ‘ y AAAAAAAA‘AAAAAAAAAAAAAAAAAAA $
‘_g 60; 5 =
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an Analysis of Electron Kinetic Profiles.

Core + Edge LIDAR V: Add edge LIDAR.

A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)
- Give all calibrations some uncertainty (what we believe).

- Give some less trusted calibrations almost complete freedom (uniform prior).

- Throw the complete problem at the GA for MAP (best fit) and
then at the MCMC for distribution...

1.2
a) % Core LIDAR Standard Analysis
1.0
z 8.0 — "] %\\ =
£ ] §
< 6.01
©4.0]
2.0
0.0+——
10)
3.044,
£ 20 I
= . \‘£:§§k§§\
1.0+
R R~ 04 ¢, 06

| LIDAR
'3.79

3.83

mag

3.79 3.81

Imperial College

A

Same model,
— SO same code.

A

N\
—




l@antAnalysis of Electron Kinetic Profiles.

Core + Edge LIDAR V: Add edge LIDAR.

A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)
- Give all calibrations some uncertainty (what we believe).

- Give some less trusted calibrations almost complete freedom (uniform prior).

- Throw the complete problem at the GA for MAP (best fit) and

then at the MCMC for distribution...
1.2

a) % Core LIDAR Standard Analysis
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Clear that result is much more
accuracte than using fixed calibration
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Same model,
— SO same code.
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l@antAnalysis of Electron Kinetic Profiles.

Core + dge LIDAR V: Add edge LIDAR.

A typical high density H-mode pulse:
- Connect up the model (Based on EFITs flux surfaces for the time being)
- Give all calibrations some uncertainty (what we believe).

- Give some less trusted calibrations almost complete freedom (uniform prior).

- Throw the complete problem at the GA for MAP (best fit) and

then at the MCMC for distribution...
1.2

a) % Core LIDAR Standard Analysis
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accuracte than using fixed calibration
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Same mode
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values.

With completely free calibration, edge
LIDAR provides shape with which Core
LIDAR can give accurate Te ped height

which feeds back to Edge LIDAR

PR

But, this isn't complete - we are still using
fixed flux surfaces. The Current tomography
without equilibirum approach is useful but
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So mapping P( g, | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)
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So mapping P( g, | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)

/ 24 /
However, equilibrium condition may give enough constraint. J¢ — Rp + Eff

NB: It's not immediately clear how restrictive force balance (GS equation) actually is, since it is almost
always used with strong prior constraints on p' (or p - the equilibirum pressure) and ff'

(or f - the poloidal current flux). With weak (almost no) contraints on p' and ff', degeneracy of solutions
is still huge.
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So mapping P( g, | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)

/ 24 /
However, equilibrium condition may give enough constraint. J(p — Rp + Eff

NB: It's not immediately clear how restrictive force balance (GS equation) actually is, since it is almost
always used with strong prior constraints on p' (or p - the equilibirum pressure) and ff'

(or f - the poloidal current flux). With weak (almost no) contraints on p' and ff', degeneracy of solutions
is still huge.

Assume GS equality is, at least close to correct: assign a PDF on difference:
P(/, p', ff') = G(J-Rp'-ff'/R; O, oGS) with relativly small o..

The posterior P(J, p', ff' | Dgiags + ~Equilibrium) should include all possible

combinations of /, p' and ff' that are consistent with the diagnostics, the priors and describe a plasma

very close to equilbrium.
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So mapping P( g, | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)

/ 24 /
However, equilibrium condition may give enough constraint. J(p — Rp + ﬁff

NB: It's not immediately clear how restrictive force balance (GS equation) actually is, since it is almost
always used with strong prior constraints on p' (or p - the equilibirum pressure) and ff'

(or f - the poloidal current flux). With weak (almost no) contraints on p' and ff', degeneracy of solutions
is still huge.

Assume GS equality is, at least close to correct: assign a PDF on difference:

P(/, p', ff') = G(J-Rp'-ff'/R; O, oGS) with relativly small o..

The posterior P(J, p', ff' | Dgjags + ~Equilibrium) should include all possible
combinations of /, p' and ff' that are consistent with the diagnostics, the priors and describe a plasma
very close to equilbrium.

Adding to model (and the code) is fairly trivial:

) !
™ FluxContouringOps

Plasma Beam Currents

Magnetics

v
v
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So mapping P( g, | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)

20
However, equilibrium condition may give enough constraint. Jp = Rp + Eff’

NB: It's not immediately clear how restrictive force balance (GS equation) actually is, since it is almost
always used with strong prior constraints on p' (or p - the equilibirum pressure) and ff'

(or f - the poloidal current flux). With weak (almost no) contraints on p' and ff', degeneracy of solutions
is still huge.

Assume GS equality is, at least close to correct: assign a PDF on difference:
P(/, p', ff') = G(J-Rp'-ff'/R; O, oGS) with relativly small o..

The posterior P(J, p', ff' | Dgjags + ~Equilibrium) should include all possible

combinations of /, p' and ff' that are consistent with the diagnostics, the priors and describe a plasma

very close to equilbrium.

JetEquilibriumTest

Adding to model (and the code) is fairly trivial:

Equilibrium test on beamset equiConstraint

PoloidalCurrentFluxFromDifferential

Plasma Beam Currents
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So mapping P( g, | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)

20
However, equilibrium condition may give enough constraint. Jp = Rp + Eff’

NB: It's not immediately clear how restrictive force balance (GS equation) actually is, since it is almost
always used with strong prior constraints on p' (or p - the equilibirum pressure) and ff'

(or f - the poloidal current flux). With weak (almost no) contraints on p' and ff', degeneracy of solutions
is still huge.

Assume GS equality is, at least close to correct: assign a PDF on difference:
P(/, p', ff') = G(J-Rp'-ff'/R; O, oGS) with relativly small o..

The posterior P(J, p', ff' | Dgjags + ~Equilibrium) should include all possible

combinations of /, p' and ff' that are consistent with the diagnostics, the priors and describe a plasma

very close to equilbrium.

JetEquilibriumTest

(W)
p WN - Equilibrium test on be: equiC()nstraint

ff'(wy) I
N PoloidalCurrentFluxFromDifferential |

ﬁlFluxGnd

Plasma Beam Currents

Adding to model (and the code) is fairly trivial:

| q
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So mapping P( g, | ... ) is still the big problem.
Will try to explore using Current Tomography with CAR prior and all the diagnositcs (soon)

HO
However, equilibrium condition may give enough constraint. Jp = Rp + Eff’

NB: It's not immediately clear how restrictive force balance (GS equation) actually is, since it is almost
always used with strong prior constraints on p' (or p - the equilibirum pressure) and ff'

(or f - the poloidal current flux). With weak (almost no) contraints on p' and ff', degeneracy of solutions
is still huge.

Assume GS equality is, at least close to correct: assign a PDF on difference:
P(/, p', ff') = G(J-Rp'-ff'/R; O, oGS) with relativly small o..

The posterior P(J, p', ff' | Dgjags + ~Equilibrium) should include all possible

combinations of /, p' and ff' that are consistent with the diagnostics, the priors and describe a plasma

very close to equilbrium.

Adding to model (and the code) is fairly trivial: pRTRT——
i

But, the problem is now very hard for the p (LI"N) I swiibiun estontes—— gquiConstraint

external algorithms to handle due to non-linera :

1OOOD+ pOSterlor. ﬁ (wN) I PoloidalCurrentFluxFromDifferential

1) Parallelise the linear solver and iterate to find
MAP (much slower but more stable than EFIT)

PoloidalFluxGrid

2) Exporing the PDF only just possible :
(last week). Plasma Beam Currents

| q
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Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
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Equilbrium II: Maximum Posterior (Magnetics Only) H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.

For H-Mode, fast changes at edge so:
J¢: Current beams with higher resolution near edge (~1cm, ~5cm in core). i
No smoothing priors, just /¢ < 100MA m-—2, n

[ {HH CTTT




::lly5i5 of Electron Kinetic Profiles. Imperial CO"EQE

' London
. . . . . 78601 High ne
Equilbrium II: Maximum Posterior (Magnetics Only) H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —

J: Current beams with higher resolution near edge (~1ecm, ~5cm in core). LCFS etc not really
No smoothing priors, just /¢ < 100MA m-—2, influenced by exactly
where high-res
beams are.
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Equilbrium II: Maximum Posterior (Magnetics Only) H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —

J: Current beams with higher resolution near edge (~1ecm, ~5cm in core). LCFS etc not really
No smoothing priors, just /¢ < 100MA m-—2, mﬂuencgd by exactly

p'(wy ), ff'(y,): 20 knots, weak smoothing priors. \t/)vhere high-res

Fairly strong prior for small SOL p' and ff' (but not fixed) i

Has anyone measured Jso, ?
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Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.

For H-Mode, fast changes at edge so:
J¢: Current beams with higher resolution near edge (~1cm, ~5cm in core).

No smoothing priors, just /¢ < 100MA m-2,

ST

LCFS etc not really
influenced by exactly
where high-res

p'(wy), ff'(wy): 20 knots, weak smoothing priors. 5
Fairly strong prior for small SOL p' and ff' (but not fixed) e
Has anyone measured JSOL
Clearly massively degenerate, so adjust p' and ff' priors to get somethmg
sensible for 1 time slice: j |
P / kPa I I 0.0
| J(Rmag)
140
120 [ PE i | -
80 g : : E 0.8
o | &
40 v : :% -1.2
EFIT (mags) P 5 ] ' '
0.0 ' 0.5 ' 1_6 2.0 2.5 3.0 35 4.0 Rmag
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Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.

For H-Mode, fast changes at edge so:
J¢: Current beams with higher resolution near edge (~1cm, ~5cm in core).

No smoothing priors, just /¢ < 100MA m-2,

ST

LCFS etc not really
influenced by exactly
where high-res

p'(wy), ff'(wy): 20 knots, weak smoothing priors. 5
Fairly strong prior for small SOL p' and ff' (but not fixed) e
Has anyone measured JSOL
Clearly massively degenerate, so adjust p' and ff' priors to get somethmg
sensible for 1 time slice: j |
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Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —
Jo: Current beams with higher resolution near edge (~1cm, ~5cm in core). LCFS etc not really
No smoothing priors, just /¢ < 100MA m-2, influenced by exactly

p'(wy), ff'(wy): 20 knots, weak smoothing priors. where high-res

Fairly strong prior for small SOL p' and ff' (but not fixed) beams are.
Has anyone measured JSOL
Clearly massively degenerate, so adjust p' and ff' priors to get somethmg
sensible for 1 time slice: j |
P / kPa I I 0.0
| J(Rmag)
140
120 | PE i | -
80 g: :g 0.8
%) 3
40 | | |12
EFIT (mags) P . ' '
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Magnetics data seems to see edge current (and hence some p'). i

Exact magnitude you get does depend on priors. P N
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Equilbrium Il: Maximum Posterior (Magnetics Only) H-Mode (pellets)
Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —
Jo: Current beams with higher resolution near edge (~1cm, ~5cm in core). LCFS etc not really

influenced by exactly

No smoothing priors, just /¢ < 100MA m-2,
where high-res

p'(wy), ff'(wy): 20 knots, weak smoothing priors.

Fairly strong prior for small SOL p' and ff' (but not fixed) beams are.
Has anyone measured J50|_
Clearly massively degenerate, so adjust p' and ff' priors to get somethmg
sensible for 1 time slice: j |
P / kPa | I 0.0
| J(Rmag)
140
120 | PE i | -
80 g: :g -0.8
o | I o
40 v : :% 1.2
EFIT (mags) P . ' '
0.0 ' 0.5 ' 1_6 2.0 25 3.0 35 4.0 Rmag
Magnetics data seems to see edge current (and hence some p'). P
Exact magnitude you get does depend on priors. P N

But... Hold priors and run accross H-mode pulse. Is there any vague trend?
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Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.

For H-Mode, fast changes at edge so: S —
Jo: Current beams with higher resolution near edge (~1cm, ~5cm in core). LCFS etc not really

No smoothing priors, just /¢ < 100MA m-2, influenced by exactly
p'(wy ), ff'(y,): 20 knots, weak smoothing priors. where high-res

Fairly strong prior for small SOL p' and ff' (but not fixed) beams are.
Has anyone measured JSOL
Clearly massively degenerate, so adjust p' and ff' priors to get somethmg
sensible for 1 time slice: j |
P / kPa | I 0.0
| J(Rmag)
140
120 [ PE i | h
80 g: :g -0.8
%) 3
40 | A
EFIT (mags) P . ' '
0.0 ' 0.5 ' 1_6 2.0 25 3.0 35 4.0 Rmag
Magnetics data seems to see edge current (and hence some p'). G
BTN

Exact magnitude you get does depend on priors.
But... Hold priors and run accross H-mode pulse. Is there any vague trend?
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Equilbrium II: Maximum Posterior (Magnetics Only) H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —

Jo: Current beams with higher resolution near edge (~1cm, ~5cm in core). LCFS etc not really
No smoothing priors, just /¢ < 100MA m-2, mﬂuencgd by exactly
p'(wy), ff'(wy): 20 knots, weak smoothing priors. where high-res
Fairly strong prior for small SOL p' and ff' (but not fixed) beams are.

Has anyone measured J5o, ?
Clearly massively degenerate, so adjust p' and ff' priors to get something

sensible for 1 time slice: ' '
P / kPa : N
| J(Rmag)
140
I 0.4
120 [ & | s
o | 'S
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. ol I o
~EQUIPl 4 | 1 |3 |12
EFIT (mags) P : 5 ] | '
0.0 ' ' 0.5 ' ' 1_6 2.0 2.5 3.0 35 4.0 Rmag
Magnetics data seems to see edge current (and hence some p'). i
E ' i PN
xact magnitude you get does depend on priors.
But... Hold priors and run accross H-mode pulse. Is there any vague trend?
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Equilbrium Il: Maximum Posterior (Magnetics Only) H-Mode (pellets)
Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —

LCFS etc not really
influenced by exactly
where high-res
beams are.

J¢: Current beams with higher resolution near edge (~1cm, ~5cm in core).
No smoothing priors, just /¢ < 100MA m-—2,
p'(wy), ff'(wy): 20 knots, weak smoothing priors.
Fairly strong prior for small SOL p' and ff' (but not fixed)
Has anyone measured J50|_
Clearly massively degenerate, so adjust p' and ff' priors to get somethmg

sensible for 1 time slice:
P/KkPa|_/\ -
| J(Rmag)
140
190 é i :5 -0.4
80 g : :E 0.8
e | /2 | Follows trends AND maintains
EFIT (mags) P~~~ ‘ N — | | | = | surprisingly good magnitude.
0.0 0.5 1.0 e *2 > > “! Suggests there is a quite lot of
Magnetics data seems to see edge current (and hence some p'). info in magnetics!
Exact magnitude you get does depend on priors. = ==
But... Hold priors and run accross H-mode pulse. Is there any vague tr%d?
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Equilbrium II: Maximum Posterior (Magnetics Only) H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —

Jo: Current beams with higher resolution near edge (~1cm, ~5cm in core). LCFS etc not really
No smoothing priors, just /¢ < 100MA m-2, mﬂuencgd by exactly
p'(wy), ff'(wy): 20 knots, weak smoothing priors. where high-res
Fairly strong prior for small SOL p' and ff' (but not fixed) beams are.

Has anyone measured Jgq ?
Clearly massively degenerate, so adjust p' and ff' priors to get something

sensible for 1 time slice: ' '
P/kPa| /\| [\ | oo
| J(Rmag)
140
| -0.4
120 BRI 1 &
© | =
80 8_| | g -0.8
. ! | 8
(2N | - -
~EQUI P 40 | ' || Follows trends AND maintains
| | 0.f ¢
EFIT (mags) P~~~ ‘ — | | | surprisingly good magnitude.
0.0 0.5 1.0 0 “2 >0 *2 *! Suggests there is a quite lot of
Magnetics data seems to see edge current (and hence some p'). info in magnetics!
Exact magnitude you get does depend on priors. = =
But... Hold priors and run accross H-mode pulse. Is there any vague tr¢nd?
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Equilbrium II: Maximum Posterior (Magnetics Only) H-Mode (pellets)
Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —
Jo: Current beams with higher resolution near edge (~1cm, ~5cm in core). LCFS etc not really
No smoothing priors, just /¢ < 100MA m-2, mﬂuencgd by exactly
p'(wy), ff'(wy): 20 knots, weak smoothing priors. where high-res
Fairly strong prior for small SOL p' and ff' (but not fixed) beams are.

Has anyone measured Jgq ?
Clearly massively degenerate, so adjust p' and ff' priors to get something

sensible for 1 time slice: ' '
P/kPa| /\| [\ | oo
¢ | J(Rmag)
140
& |
120 BRI 1 &
© | =
80 8_| | g -0.8
. ! | 8
(2N | - -
~EQUI P 40 | ' || Follows trends AND maintains
| | 0.f ¢
EFIT (mags) P ‘ — | | | surprisingly good magnitude.
0.0 0.5 1.0 0 “2 >0 *2 *! Suggests there is a quite lot of
Magnetics data seems to see edge current (and hence some p'). info in magnetics!
Exact magnitude you get does depend on priors. = =
But... Hold priors and run accross H-mode pulse. Is there any vague tr¢nd?
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Equilbrium II: Maximum Posterior (Magnetics Only) H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —
Jo: Current beams with higher resolution near edge (~1cm, ~5cm in core). LCFS etc not really
No smoothing priors, just /¢ < 100MA m-2, mﬂuencgd by exactly
p'(wy), ff'(wy): 20 knots, weak smoothing priors. where high-res
Fairly strong prior for small SOL p' and ff' (but not fixed) beams are.
Has anyone measured Jgq ?
Clearly massively degenerate, so adjust p' and ff' priors to get something

sensible for 1 time slice:

0.0 0.5 | 1.0

Magnetics data seems to see edge current (and hence some p').
Exact magnitude you get does depend on priors.
But... Hold priors and run accross H-mode pulse. Is there any vague t
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info in magnetics!
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Equilbrium II: Maximum Posterior (Magnetics Only) H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —

Jo: Current beams with higher resolution near edge (~1cm, ~5cm in core). LCFS etc not really
No smoothing priors, just /¢ < 100MA m-2, mﬂuencgd by exactly
p'(wy), ff'(wy): 20 knots, weak smoothing priors. where high-res
Fairly strong prior for small SOL p' and ff' (but not fixed) beams are.

Has anyone measured Jgq ?
Clearly massively degenerate, so adjust p' and ff' priors to get something

sensible for 1 time slice: ' '
P/kPa| /\| [\ | oo
| J(Rmag)
140
| -0.4
120 BRI 1 &
© | =
80 8_| | g -0.8
. ! | 8
(2N | - -
~EAQUIP| 40 | ¥ || Follows trends AND maintains
| | 0.f ¢
EFIT (mags) P~~~ ‘ — | | | surprisingly good magnitude.
0.0 0.5 1.0 e *2 > > “! Suggests there is a quite lot of
Magnetics data seems to see edge current (and hence some p'). info in magnetics!
Exact magnitude you get does depend on priors. = ==
But... Hold priors and run accross H-mode pulse. Is there any vague tr¢nd?
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Equilbrium II: Maximum Posterior (Magnetics Only) H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —

Jo: Current beams with higher resolution near edge (~1cm, ~5cm in core). LCFS etc not really
No smoothing priors, just /¢ < 100MA m-2, mﬂuencgd by exactly
p'(wy), ff'(wy): 20 knots, weak smoothing priors. where high-res
Fairly strong prior for small SOL p' and ff' (but not fixed) beams are.

Has anyone measured Jgq ?
Clearly massively degenerate, so adjust p' and ff' priors to get something

sensible for 1 time slice: ' '
P/kPa| /\| [\ | oo
| J(Rmag)
140
| -0.4
120 | P& |
© | =
80 8_| | g -0.8
. ! | 8
(2N | - -
~EAQUIP| 40 | ¥ || Follows trends AND maintains
| | 0.f ¢
EFIT (mags) P~~~ ‘ — | | | surprisingly good magnitude.
0.0 0.5 1.0 e *2 > > “! Suggests there is a quite lot of
Magnetics data seems to see edge current (and hence some p'). info in magnetics!
Exact magnitude you get does depend on priors. = ==
But... Hold priors and run accross H-mode pulse. Is there any vague tr¢nd? \
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Equilbrium II: Maximum Posterior (Magnetics Only) H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —

Jo: Current beams with higher resolution near edge (~1cm, ~5cm in core). LCFS etc not really
No smoothing priors, just /¢ < 100MA m-2, mﬂuencgd by exactly
p'(wy), ff'(wy): 20 knots, weak smoothing priors. where high-res
Fairly strong prior for small SOL p' and ff' (but not fixed) beams are.

Has anyone measured Jgq ?
Clearly massively degenerate, so adjust p' and ff' priors to get something

sensible for 1 time slice: ' '
P/kPa| /\| [\ | oo
| J(Rmag)
140
| -0.4
120 BRI 1 &
© | =
80 8_| | g -0.8
. ! | 8
(2N | - -
~EAQUIP| 40 | ¥ || Follows trends AND maintains
| | 0.f ¢
EFIT (mags) P~~~ ‘ — | | | surprisingly good magnitude.
0.0 0.5 1.0 e *2 > > “! Suggests there is a quite lot of
Magnetics data seems to see edge current (and hence some p'). info in magnetics!
Exact magnitude you get does depend on priors. = ==
But... Hold priors and run accross H-mode pulse. Is there any vague tr¢nd?
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Equilbrium II: Maximum Posterior (Magnetics Only) H-Mode (pellets)

Because of modularity, we can switch parametrisation and priors of /, p' and ff' at will and on-the-fly.
For H-Mode, fast changes at edge so: S —

Jo: Current beams with higher resolution near edge (~1cm, ~5cm in core). LCFS etc not really
No smoothing priors, just /¢ < 100MA m-2, mﬂuencgd by exactly
p'(wy), ff'(wy): 20 knots, weak smoothing priors. where high-res
Fairly strong prior for small SOL p' and ff' (but not fixed) beams are.

Has anyone measured Jgq ?
Clearly massively degenerate, so adjust p' and ff' priors to get something

sensible for 1 time slice: ' '
P/kPa| /\| [\ | oo
| J(Rmag)
140
| -0.4
120 BRI 1 &
© | =
80 8_| | g -0.8
. ! | 8
(2N | - -
~EAQUIP| 40 | ¥ || Follows trends AND maintains
| | 0.f ¢
EFIT (mags) P~~~ ‘ — | | | surprisingly good magnitude.
0.0 0.5 1.0 e *2 > > “! Suggests there is a quite lot of
Magnetics data seems to see edge current (and hence some p'). info in magnetics!
Exact magnitude you get does depend on priors. = ==
But... Hold priors and run accross H-mode pulse. Is there any vague tr¢nd?
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! With the high-res beams, the posterior is 4732D. This is far too much for the

il i MCMC algorithm (as it stands). So, for the moment, use a lower res (5cm beams).

Also, we need to allow a little more flexibility in GS difference (~1% of /) so it can explore.
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T Equilbrium IlI: Equilibria Exploration. e e
! With the high-res beams, the posterior is 4732D. This is far too much for the

il i MCMC algorithm (as it stands). So, for the moment, use a lower res (5cm beams).

Also, we need to allow a little more flexibility in GS difference (~1% of /) so it can explore.

Jo
Rp' + ff'/R

RMag
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T Equilbrium IlI: Equilibria Exploration. e e
! With the high-res beams, the posterior is 4732D. This is far too much for the

il i MCMC algorithm (as it stands). So, for the moment, use a lower res (5cm beams).

Also, we need to allow a little more flexibility in GS difference (~1% of /) so it can explore.

. j¢ P / kPa 1
il Rp' + ff'/R 150
il ]
\ 100
50 ; ,
1 Pressure N
0- Samples

RMag 30 382 34 36 3.8 pgMag
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T Equilbrium IlI: Equilibria Exploration. e e
! With the high-res beams, the posterior is 4732D. This is far too much for the

il i MCMC algorithm (as it stands). So, for the moment, use a lower res (5cm beams).

Also, we need to allow a little more flexibility in GS difference (~1% of /) so it can explore.

. _/¢ P / kPa 1
il Rp' + ff'/R 150
il ]
\ 100
50 ; ,
1 Pressure S
015amples

We can add a prior for monotonic P (-ve P'):
P / kPa
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Equilbrium IlI: Equilibria Exploration. H-Mode (pellets)

With the high-res beams, the posterior is 4732D. This is far too much for the
MCMC algorithm (as it stands). So, for the moment, use a lower res (5cm beams).
Also, we need to allow a little more flexibility in GS difference (~1% of /) so it can explore.

Jg P /kPa 1
Rp' + ff'/R 1501

1001

We can add a prior for monotonic|P (-ve P'):
P / kPa

m 505 Pressure =\
Beam resolution could be too low to 0l Samples
really see what it says about pedestal RMag 30 32 34 36 3.8 RMag
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™ Equilbrium IlI: Equilibria Exploration., H-Mode (pellets)

With the high-res beams, the posterior is 4732D. This is far too much for the
MCMC algorithm (as it stands). So, for the moment, use a lower res (5cm beams).

7

Also, we need to allow a little more flexibility in GS difference (~1% of /) so it can explore.

P /kPa -

Rp + ff'/R 150
1001

50 1

] Pressure
Beam resolution could be too low to 0]Samples N
really see what it says about pedestal RMag 30 329 34 36 3.8 RMag

We can add a prior for monotonic
P / kPa

150 1
100 1
50 ]

3.0 3.2 3.4 3.6 3.8

P (-ve P):

Mag. Axis position

20 25 3.0 3:5RMag

7298 3.00 3.02 3.04p
RMag s 0- q

4.01

3.0: /
2.01 /
1.0+ . : : : :

‘0.0 0.2 0.4 0.6 0.8 1.0
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Equilbrium I1I: Equilibria Exploration. H-Mode (pellets)
With the high-res beams, the posterior is 4732D. This is far too much for the
MCMC algorithm (as it stands). So, for the moment, use a lower res (5cm beams).
Also, we need to allow a little more flexibility in GS difference (~1% of /) so it can explore.

! Rp + ff'/R 150
\tH ]
\ 100

50

\
/

7

1 Pressure
Beam resolution could be too low to 0] Samples \
really see what it says about pedestal RMag 30 30 3 4 36 28 nas —

LCFS Uncertainty (~3cm)
- probably determined

Mag. Axis position by prior assumptions on /s,

We can add a prior for monotonic|P (-ve P'):

P / kPa

150 1
100 1
50 ]

bl : 20 25 30 35
30 32 34 36 3.8 298 3.00 3.02 304R RMag
. . . . 8RMag | q
5.0: /
4.0:

3.0: /
2.01 /
1.0+ . : : : :

‘0.0 0.2 0.4 0.6 0.8 1.0




8n Analysis of Electron Kinetic Profiles. Imperial College

London

. . - . . 78601 High
Equilbrium I1I: Equilibria Exploration. H-Mode (pellets)

With the high-res beams, the posterior is 4732D. This is far too much for the
MCMC algorithm (as it stands). So, for the moment, use a lower res (5cm beams).
Also, we need to allow a little more flexibility in GS difference (~1% of /) so it can explore.

i P /KkPa :

i, Rp + ff/R 150
\tH ]
\ 100
50

\
/

7

1 Pressure
Beam resolution could be too low to 0] Samples \
really see what it says about pedestal RMag 30 30 3 4 36 28 nas —

LCFS Uncertainty (~3cm)
- probably determined

Mag. Axis position by prior assumptions on /s,

We can add a prior for monotonic|P (-ve P'):

P / kPa

150 1
100 1

S0 ‘\
0 \

3.0 3.2 3.4 3.6 3.8

20 25 3.0 3:5RMag

7298 3.00 3.02 3.04p

RMag _

q
Of course, we can see how other diagnostics reduce this uncertainty, just by 5.0 /
adding their forward model to the system and running it again. 4.0 |

This will be good for the obvious cases: MSE, Polarimetry etc, but maybe 3.0

others too. e.g Interferometry and Edge LIDAR. 2:02 //
fE—
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TR Equilbrium Ill: Equilibria Exploration. H-Mode (pollots)
With the high-res beams, the posterior is 4732D. This is far too much for the

MCMC algorithm (as it stands). So, for the moment, use a lower res (5cm beams).

Also, we need to allow a little more flexibility in GS difference (~1% of /) so it can explore.

i P /KkPa :

i, Rp + ff/R 150
\tH ]
\ 100
50

\
/

1 Pressure
Beam resolution could be too low to 0] Samples \
really see what it says about pedestal RMag 30 30 3 4 36 28 nas —

LCFS Uncertainty (~3cm)

W dd ior f tonic|P (-ve P'): _
e can add a prior for monotonic|P (-ve P')  probably determined
P/ kP_a Mag. Axis position by prior assumptions on /s,
150 ; et |
100 e\
50 1 ‘\
0 . L : 20 25 30 35
30 32 34 36 38 298 3.00 3.02 3.04p A
: : : : 8RMag _ ;
Of course, we can see how other diagnostics reduce this uncertainty, just by 5.01 /
adding their forward model to the system and running it again. 4.0

This will be good for the obvious cases: MSE, Polarimetry etc, but maybe 3.0

others too. e.g Interferometry and Edge LIDAR. 2:02 //
fE—

All of this still needs lots of investigating and validating... 000204 06 08 1.0
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Conclusions so far and work to do...

Developed full models for core and edge LIDAR and polarimetry, combined with existing
magnetics and interferometry models.
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Conclusions so far and work to do...

( Developed full models for core and edge LIDAR and polarimetry, combined with existing
magnetics and interferometry models.

( Have a framework for analysing diagnostics which not only can cope with mapping uncertainty, but
also automatically feeds back information from diagnostic to make inference on the mapping (currents).

( Similarly, can deal with uncertain calibrations, no matter how complex the model



nalysis of Electron Kinetic Profiles. Imperial College
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Conclusions so far and work to do...

Developed full models for core and edge LIDAR , combined with existing
magnetics and interferometry models.

Have a framework for analysing diagnostics which not only can cope with mapping uncertainty, but
also automatically feeds back information from diagnostic to make inference on the mapping (currents).

Similarly, can deal with uncertain calibrations, no matter how complex the model

Core+Edge LIDARs + Inteferometry give accurate ng, T, profiles entirely independent of HRTS.

Need to look at what LIDARs + Interferometry can say about mapping/currents.
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eooo (Can we test pedestal scaling from edge LIDAR just with uncertain mapping (CT).
[Have 7000 time points, type-I ELMy H-Mode, marked and clear of ELMS since Edge LIDAR upgrade C20-C27 ]

°oo Do we get enough info to test current models at edge?



