

Imperial College London

Bayesian Diagnostic Analysis at JET:

Interferometry and Polarimetry

Oliver Ford

Thanks to:

Dr J. Svensson PhD Supervisor (JET) Dr A. Boboc Inteferometry/Polarimetry

JET Contributors

Imperial College London

Talk Outline

- Project Outline
- Bayesian / forward modelling principles.
- A simple example: Interferometry inversion.
- Polarimetry:
 - Basics
 - Complications
 - A side result: High Temperature Effects

Imperial College London

Integrated Analysis

Model for the basic physical quantities.

Imperial College London

Integrated Analysis

Model for the basic physical quantities.

Models for the prediction of other required quantities.

Imperial College London

Imperial College London

Imperial College London

Integrated Analysis

Model for the basic physical quantities.

Models for the prediction of other required quantities.

Complete model for each diagnostic system, predicting the data it reports. The *"Forward Function"*.

Imperial College London

Imperial College London

Imperial College London

Imperial College London

Bayesian Inference

From probability theory... Bayes Theorem:

 $P(A \mid B) = P(B \mid A) P(A)$ P(B)

Imperial College London

Bayesian Inference

From probability theory... Bayes Theorem:

$P(\mu \mid D) \propto P(D \mid \mu) P(\mu)$

• μ – All free parameters in the system: Physical states n_e , T_e and **j** as well as calibration parameters e.g. Lines of sight.

Imperial College London

Bayesian Inference

From probability theory... Bayes Theorem:

 $P(\mu \mid D) \propto P(D \mid \mu) P(\mu)$

Likelihood

- μ All free parameters in the system: Physical states n_e , T_e and **j** as well as calibration parameters e.g. Lines of sight.
- Likelihood: $P(D|\mu)$ Probability that the system described by μ will produce data D in presence of random noise.

Imperial College London

Bayesian Inference

From probability theory... Bayes Theorem:

 $P(\mu | D) \propto P(D | \mu) P(\mu)$

Likelihood

Posterior

- μ All free parameters in the system: Physical states n_e , T_e and **j** as well as calibration parameters e.g. Lines of sight.
- Likelihood: $P(D|\mu)$ Probability that the system described by μ will produce data D in presence of random noise.
- **Posterior:** $P(\mu | D)$ Probability that system is really in state described by μ given that we have measured data D.

Imperial College London

Prior

Bayesian Inference

From probability theory... Bayes Theorem:

 $P(\mu | D) \propto P(D | \mu) P(\mu)$

Likelihood

Posterior

- μ All free parameters in the system: Physical states n_e , T_e and **j** as well as calibration parameters e.g. Lines of sight.
- Likelihood: $P(D|\mu)$ Probability that the system described by μ will produce data D in presence of random noise.
- **Posterior:** $P(\mu | D)$ Probability that system is really in state described by μ given that we have measured data D.
- Prior: P(µ) Prior knowledge (or lack of knowledge) of parameters before data was taken.

Imperial College London

Prior

Bayesian Inference

From probability theory... Bayes Theorem:

 $P(\mu | D) \propto P(D | \mu) P(\mu)$

Likelihood

Posterior

- μ All free parameters in the system: Physical states n_e , T_e and **j** as well as calibration parameters e.g. Lines of sight.
- Likelihood: $P(D|\mu)$ Probability that the system described by μ will produce data D in presence of random noise.
- **Posterior:** $P(\mu | D)$ Probability that system is really in state described by μ given that we have measured data D.
- Prior: P(μ) Prior knowledge (or lack of knowledge) of parameters before data was taken.
- P(µ|D) Encapsulates our knowledge of the system Including all statistical and systematic erors, calibration uncertainty, correlations etc.

Imperial College London

Prior

Bayesian Inference

From probability theory... Bayes Theorem:

 $P(\mu | D) \propto P(D | \mu) P(\mu)$

Likelihood

Posterior

- μ All free parameters in the system: Physical states n_e , T_e and **j** as well as calibration parameters e.g. Lines of sight.
- Likelihood: $P(D|\mu)$ Probability that the system described by μ will produce data D in presence of random noise.
- **Posterior:** $P(\mu | D)$ Probability that system is really in state described by μ given that we have measured data D.
- Prior: P(µ) Prior knowledge (or lack of knowledge) of parameters before data was taken.
- P(µ|D) Encapsulates our knowledge of the system Including all statistical and systematic erors, calibration uncertainty, correlations etc.
- Combining diagnostics: $P(n_e, T_e, j | All Data) =$

• $P(D_{Polarimetry} | n_e, T_e, j) \times P(D_{Interferrometry} | n_e) \times P(D_{Magnetics} | j) \times P(n_e, T_e, j)$

Imperial College London

Interferometry Inversion I

As an example of Bayesian Methods

Physical Parameters: Density parameterised as 1D linear interpolation of 30 nodes over Ψ_{N} .

Imperial College London

Interferometry Inversion I

As an example of Bayesian Methods

Physical Parameters: Density parameterised as 1D linear interpolation of 30 nodes over Ψ_{N} .

Forward Function: Linear combination of the 30 nodes

$$f_i\left({{{{
m{n}}_{
m{e}}}}}
ight) = \sum\limits_{j = 1}^N {{W_{ij}}\;{n_{{e_j}}}}$$

Weights determined by surfaces and lines of sight.

Imperial College London

Interferometry Inversion I

As an example of Bayesian Methods

Physical Parameters: Density parameterised as 1D linear interpolation of 30 nodes over Ψ_{N} .

Forward Function: Linear combination of the 30 nodes

$$f_i\left({{{{\mathrm{\underline{n}}}_{\mathrm{e}}}}}
ight) = \sum\limits_{j = 1}^N {{W_{ij}}\;{n_{{{e}_j}}}} \; .$$

Weights determined by surfaces and lines of sight.

• Likelihood: Each channel is Gaussian around $f(n_p)$ with $\sigma_d = 3 \times 10^{17} m^{-2}$.

Imperial College London

Interferometry Inversion I

As an example of Bayesian Methods

Physical Parameters: Density parameterised as 1D linear interpolation of 30 nodes over Ψ_{N} .

Forward Function: Linear combination of the 30 nodes

$$f_i\left({{{{
m{n}}_{
m{e}}}}}
ight) = \sum\limits_{j = 1}^N {{W_{ij}}\;{n_{{e_j}}}}$$

Weights determined by surfaces and lines of sight.

- Likelihood: Each channel is Gaussian around $f(n_e)$ with $\sigma_d = 3 \times 10^{17} \text{ m}^{-2}$.
- Prior: Density must be positive: $P(\underline{\mathbf{n}_e}) = 0$ for $\mathbf{n}_e < 0$. For positive n_e , use a Gaussian centered at 0 with $\sigma_p = 2 \times 10^{20} \text{ m}^{-3}$ to suggest each node should be in JETs operating regeime.

Imperial College London

Interferometry Inversion I

As an example of Bayesian Methods

Physical Parameters: Density parameterised as 1D linear interpolation of 30 nodes over ψ_N .

Forward Function: Linear combination of the 30 nodes

$$f_i\left({{{{
m{n}}_{
m{e}}}}}
ight) = \sum\limits_{j = 1}^N {{W_{ij}}\;{n_{{e_j}}}} \; .$$

Weights determined by surfaces and lines of sight.

- Likelihood: Each channel is Gaussian around $f(n_e)$ with $\sigma_d = 3 \times 10^{17} \text{ m}^{-2}$.
- Prior: Density must be positive: $P(\underline{\mathbf{n}_e}) = 0$ for $\mathbf{n}_e < 0$. For positive n_e , use a Gaussian centered at 0 with $\sigma_p = 2 \times 10^{20} \, m^{-3}$ to suggest each node should be in JETs operating regeime.
- Posterior: Rewrite likelihood and prior as multivariate Gaussians:

$$P\left(\underline{\mathbf{n}_{e}} \mid \underline{\mathbf{D}}\right) \propto \begin{cases} \mathcal{G}\left(\underline{\mathbf{D}}; \ \underline{\mathbf{W}} \ \underline{\mathbf{n}_{e}}, \ \underline{\boldsymbol{\sigma}_{\mathbf{D}}}\right) \mathcal{G}\left(\underline{\mathbf{n}_{e}}; \ \underline{\mathbf{0}}, \ \underline{\boldsymbol{\sigma}_{\mathbf{P}}}\right) & \text{for all } n_{e_{j}} \geq 0 \\ 0 & \text{otherwise} \end{cases}$$

Imperial College London

Interferometry Inversion II

• Multiply Gaussians and rewrite as $f(n_{p})$:

Imperial College London

Interferometry Inversion II

• Multiply Gaussians and rewrite as $f(n_{p})$:

$$P\left(\underline{\mathbf{n}}_{\underline{\mathbf{e}}} \middle| \underline{\mathbf{D}}\right) \propto \mathcal{G}\left(\underline{\mathbf{n}}_{\underline{\mathbf{e}}}; \ \underline{\mathbf{n}}_{\underline{\mathbf{e}}0}, \underline{\underline{\sigma}}_{\underline{\mathbf{n}}_{\underline{\mathbf{e}}}}\right) \text{ for all } n_{e_{j}} \ge 0 \qquad \text{Truncated} \\ \text{with} \quad \underline{\mathbf{n}}_{\underline{\mathbf{e}}0} = \underline{\underline{\sigma}}_{\underline{\mathbf{n}}_{\underline{\mathbf{e}}}} \underline{\underline{\mathbf{W}}}^{T} \underline{\underline{\sigma}}_{\underline{\mathbf{D}}}^{-1} \underline{\underline{\mathbf{D}}} \\ \underline{\underline{\sigma}}_{\underline{\mathbf{n}}_{\underline{\mathbf{e}}}} = \left[\underline{\underline{\mathbf{W}}}^{T} \underline{\underline{\sigma}}_{\underline{\mathbf{D}}}^{-1} \underline{\underline{\mathbf{W}}} + \underline{\underline{\sigma}}_{\underline{\mathbf{P}}}^{-1}\right]^{-1} \qquad \text{Gaussian.}$$

• Single (non-trivial) matrix inversion gives full posterior for density profile.

Imperial College London

Interferometry Inversion II

• Multiply Gaussians and rewrite as $f(n_{p})$:

$$P\left(\underline{\mathbf{n}_{e}} \mid \underline{\mathbf{D}}\right) \propto \mathcal{G}\left(\underline{\mathbf{n}_{e}}; \ \underline{\mathbf{n}_{e0}}, \underline{\underline{\sigma}_{n_{e}}}\right) \text{ for all } n_{e_{j}} \geq 0$$

$$\text{with} \quad \underline{\mathbf{n}_{e0}} = \quad \underline{\underline{\sigma}_{n_{e}}} \underline{\underline{W}}^{T} \underline{\underline{\sigma}_{D}}^{-1} \underline{\underline{\mathbf{D}}}$$

$$\underline{\underline{\sigma}_{n_{e}}} = \quad \left[\underline{\underline{W}}^{T} \underline{\underline{\sigma}_{D}}^{-1} \underline{\underline{W}} + \underline{\underline{\sigma}_{P}}^{-1}\right]^{-1}$$

$$\text{Truncated multivariate Gaussian.}$$

- Single (non-trivial) matrix inversion gives full posterior for density profile.
- To examine the posterior, show maximum posterior

Imperial College London

Interferometry Inversion II

• Multiply Gaussians and rewrite as $f(n_{e})$:

$$P\left(\underline{\mathbf{n}_{e}} \mid \underline{\mathbf{D}}\right) \propto \mathcal{G}\left(\underline{\mathbf{n}_{e}}; \ \underline{\mathbf{n}_{e0}}, \underline{\underline{\sigma}_{n_{e}}}\right) \text{ for all } n_{e_{j}} \ge 0$$

with $\underline{\mathbf{n}_{e0}} = \underline{\underline{\sigma}_{n_{e}}} \underline{\underline{\mathbf{W}}}^{T} \underline{\underline{\sigma}_{D}}^{-1} \underline{\underline{\mathbf{D}}}$
 $\underline{\underline{\sigma}_{n_{e}}} = \left[\underline{\underline{\mathbf{W}}}^{T} \underline{\underline{\sigma}_{D}}^{-1} \underline{\underline{\mathbf{W}}} + \underline{\underline{\sigma}_{P}}^{-1}\right]^{-1}$

Truncated multivariate Gaussian.

- Single (non-trivial) matrix inversion gives full posterior for density profile.
- To examine the posterior, show maximum posterior and draw samples to represent uncertainty.
- Looks messy! but this is representing what the interferometry alone says about the n profile. Any oscillating profile that does not change the line integral

doesn't change the likelihood so is equally likely as a smooth one.

Imperial College London

Interferometry Inversion II

• Multiply Gaussians and rewrite as $f(n_{e})$:

$$P\left(\underline{\mathbf{n}_{e}} \mid \underline{\mathbf{D}}\right) \propto \mathcal{G}\left(\underline{\mathbf{n}_{e}}; \ \underline{\mathbf{n}_{e0}}, \underline{\underline{\sigma}_{\mathbf{n}_{e}}}\right) \text{ for all } n_{e_{j}} \ge 0$$

with $\underline{\mathbf{n}_{e0}} = \underline{\underline{\sigma}_{\mathbf{n}_{e}}} \underline{\underline{\mathbf{W}}}^{T} \underline{\underline{\sigma}_{\mathbf{D}}}^{-1} \underline{\underline{\mathbf{D}}}$
 $\underline{\underline{\sigma}_{\mathbf{n}_{e}}} = \left[\underline{\underline{\mathbf{W}}}^{T} \underline{\underline{\sigma}_{\mathbf{D}}}^{-1} \underline{\underline{\mathbf{W}}} + \underline{\underline{\sigma}_{\mathbf{P}}}^{-1}\right]^{-1}$

Truncated multivariate Gaussian.

- Single (non-trivial) matrix inversion gives full posterior for density profile.
- To examine the posterior, show maximum posterior and draw samples to represent uncertainty.
- Looks messy! but this is representing what the interferometry alone says about the n_a

n_{e (j+1)}

profile. Any oscillating profile that does not change the line integral doesn't change the likelihood so is equally likely as a smooth one. Posterior is very narrow and aligned to these oscillations.

Imperial College London

Interferometry Inversion III

 If it is believed it should be smoother, this is *prior knowledge*, e.g Impose low probability for large difference between neighbouring nodes:

$$P(\underline{\mathrm{N}_{\mathrm{e}}}) \propto \prod_{j=1}^{N-1} \mathcal{G}\left(rac{\left(N_{e_{(j+1)}} - N_{e_{j}}
ight)}{\Delta \psi}; \ 0, \ \sigma_{\frac{dN_{e}}{d\psi}}
ight) \ \mathrm{with} \ \sigma_{\frac{dN_{e}}{d\psi}} = 2.5 \times 10^{20}$$

Imperial College London

Interferometry Inversion III

 If it is believed it should be smoother, this is *prior knowledge*, e.g Impose low probability for large difference between neighbouring nodes:

$$P(\underline{N_e}) \propto \prod_{j=1}^{N-1} \mathcal{G}\left(\frac{\left(N_{e_{(j+1)}} - N_{e_j}\right)}{\Delta \psi}; \ 0, \ \sigma_{\frac{dN_e}{d\psi}}\right) \text{ with } \sigma_{\frac{dN_e}{d\psi}} = 2.5 \times 10^{20}$$

Imperial College London

Interferometry Inversion III

 If it is believed it should be smoother, this is *prior knowledge*, e.g Impose low probability for large difference between neighbouring nodes:

$$\mathcal{P}(\underline{\mathrm{N}_{\mathrm{e}}}) \propto \prod_{j=1}^{N-1} \mathcal{G}\left(rac{\left(N_{e_{(j+1)}} - N_{e_{j}}
ight)}{\Delta \psi}; \ 0, \ \sigma_{\frac{dN_{e}}{d\psi}}
ight) \ \mathrm{with} \ \sigma_{\frac{dN_{e}}{d\psi}} = 2.5 imes 10^{20}$$

 Drawing 300 samples and plotting sample density for each node gives marginal for each node:

Imperial College London

Interferometry Inversion III

 If it is believed it should be smoother, this is *prior knowledge*, e.g Impose low probability for large difference between neighbouring nodes:

$$\mathcal{P}(\underline{\mathrm{N}_{\mathrm{e}}}) \propto \prod_{j=1}^{N-1} \mathcal{G}\left(\frac{\left(N_{e_{(j+1)}} - N_{e_{j}}\right)}{\Delta \psi}; \ 0, \ \sigma_{\frac{dN_{e}}{d\psi}}\right) \ \mathrm{with} \ \sigma_{\frac{dN_{e}}{d\psi}} = 2.5 \times 10^{20}$$

 Drawing 300 samples and plotting sample density for each node gives marginal for each node:

- Can now see density is better known where integration is more heavily weighted, i.e where the lines of sight are almost tangential to surfaces.
- This 'looks nicer', but the former posterior better represents what is actually <u>known</u>.
- Many non-physical profiles are given a high probability in the former but the 'real' profile will also be given a high probability.
- With the extra prior, sharp changes in the real profile will mean its given a low probability.

Imperial College London

Polarimetry: Basic Principles

• Polarisation state described by rotation ψ and ellipticity tan χ .

Imperial College London

Polarimetry: Basic Principles

• Polarisation state described by rotation ψ and ellipticity tan χ .

Imperial College London

Polarimetry: Basic Principles

• Polarisation state described by rotation ψ and ellipticity tan χ .

- Effect of plasma usually split into two cases:
- **B** // **z**: Faraday rotation:

$$\Delta \psi \propto \int B_{\parallel} n_e \, dz$$

 $\chi = 0$

Imperial College London

Polarimetry: Basic Principles

• Polarisation state described by rotation ψ and ellipticity tan χ .

- Effect of plasma usually split into two cases:
- **B** // **z**: Faraday rotation:

B₁**z**: Cotton-Mouton effect:

 $\Delta \psi \propto \int B_{\parallel} n_e \, dz \qquad \qquad \psi = 45^{\circ} \text{ to } B$ $\chi = 0 \qquad \qquad \chi \propto \int B_{\perp}^2 n_e \, dz$

• For **B** at an arbitary angle θ to **z** and with large effects, these are not valid!

Imperial College London

Polarimetry: Full Model

[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

Better model^[1] describes polarisation as stokes vector <u>s</u>:

Imperial College London

Polarimetry: Full Model

[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

Better model^[1] describes polarisation as stokes vector <u>s</u>:

$$\frac{d\underline{s}}{dz} = \underline{\Omega} \times \underline{s}$$
 \leftarrow Integrate along line of sight.

Imperial College London

Polarimetry: Full Model

[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

Better model^[1] describes polarisation as stokes vector <u>s</u>:

$$\frac{d\underline{s}}{dz} = \underline{\Omega} \times \underline{s}$$
 \leftarrow Integrate along line of sight.

Cold plasma model (Te < 5 keV):

$$\underline{\Omega} = \frac{\omega_p^2}{2c\omega^3 \left(1 - \omega_c^2/\omega^2\right)} \begin{bmatrix} \left(e/m\right)^2 & \left(B_x^2 - B_y^2\right) \\ \left(e/m\right)^2 & 2B_x B_y \\ 2\omega \left(e/m\right) & B_z \end{bmatrix}$$

Imperial College London

Polarimetry: Full Model

[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

Better model^[1] describes polarisation as stokes vector <u>s</u>:

- Typically one effect is minimised to avoid this, e.g. lateral channels.
- Forward modelling and Bayesian approaches allow maximum use of both effects.

Imperial College London

Polarimetry: Full Model

[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

Better model^[1] describes polarisation as stokes vector <u>s</u>:

- Typically one effect is minimised to avoid this, e.g. lateral channels.
- Forward modelling and Bayesian approaches allow maximum use of both effects.
- To test model: Perform interferometry inversion and draw 300 sample n_e profiles. Predict ψ and χ for each sample using **B** from EFIT.
- This gives $P(\psi \mid D, B)$ and $P(\chi \mid D, B)$ what can be inferred about what ψ and χ 'should be', given only the interferometry data (and EFIT B).

Imperial College London

Polarimetry: Comparison I (Channel 5)

Compare these with measured values (at 500ms intervals for 1313 pulses)... Channel 5:

Imperial College London

Polarimetry: Comparison I (Channel 5)

Compare these with measured values (at 500ms intervals for 1313 pulses)... Channel 5:

Imperial College London

Polarimetry: Comparison I (Channel 5)

Compare these with measured values (at 500ms intervals for 1313 pulses)... Channel 5:

Imperial College London

Polarimetry: Comparison I (Channel 5)

Compare these with measured values (at 500ms intervals for 1313 pulses)... Channel 5: Good agreement for both ψ and χ .

Can only make predictions for this channel with the full model. χ is heavily dependent on ψ – provides extra information on Bpol.

Imperial College London

Polarimetry: Comparison II (Channel 3)

Channel 3 (core) shows a systematic disgreement on ψ during H-mode phase. Suspected due to inaccurate magnetic axis position from EFIT. σ_{16}

Imperial College London

Polarimetry: Comparison II (Channel 3)

Channel 3 (core) shows a systematic disgreement on ψ during H-mode phase. Suspected due to inaccurate magnetic axis position from EFIT.

Systematic disgreement at very high n_{e} . - Calibration Suspected!!

Imperial College London

Polarimetry: High Te Effects

- For Te > \sim 5keV, the cold plasma model (Ω_{0}) is not sufficient...
- High velocity electrons see Doppler shifted incident wave.
 - Calculate polarisation evolution Ω in terms of dielectric tensor ε .
 - Take $\boldsymbol{\varepsilon}$ from integration of Vlasov equation over Maxwellian.
 - Expand in T_a and take linear terms [2].
 - Leads to correction from the cold plasma of:

$$\underline{\Omega_1} \approx \underline{\Omega_0} + \frac{T_e}{mc^2} \begin{bmatrix} 12 & \Omega_{0_1} \\ 12 & \Omega_{0_2} \\ 3 & \Omega_{0_2} \end{bmatrix}$$

- But high velocity electrons also have relativistic mass increase.
 - Take $\boldsymbol{\varepsilon}$ from integration of relativistic Vlasov equation over relativistic Maxwellian [3].
 - Now have more terms linear in T_a but in the opposite direction:

$$\underline{\Omega_2} \approx \underline{\Omega_0} + \frac{T_e}{mc^2} \begin{bmatrix} 4\frac{1}{2} & \Omega_{0_1} \\ 4\frac{1}{2} & \Omega_{0_2} \\ -2 & \Omega_{0_2} \end{bmatrix}$$

[2]: S. E. Segre et al, Phys. Plasmas 9 2919 (2002)[3]: V. V. Mirnov, Phys. Plasmas 14 102105 (2007)

Imperial College London

Polarimetry: High Te Effects

- Channel 3 passes through very core of plasma where Te can be up to 10KeV.
- For all but very high n_{a} , χ of channel 3 works.
- Evaluate full model based on interferometry invesion for cold model and both corrections.
- Pulses with Te > 8keV and where calibration has worked well show clearly better agreement with Ω_2 :

Imperial College London

Polarimetry: High Te Effects

- In general, calibration and noise uncertainty are bigger than difference between the models. To prove it we must look at lots of data...
- 300 pulses with Te > 5keV.
- Very slight systematic underestimate by $\Omega_0^{}$ and overestimate by $\Omega_1^{}$. $\Omega_2^{}$ looks straighter in comparison.

Imperial College London

Work In Progress

- Understand/fix polarimetry calibration!
- Develop probabalistic model for the polarimetry detectors.
- Combine magnetics, interferometry and polarimetry to simultaneously find $P(n_{e}, j \mid All Data)$
- Include LIDAR, Edge LIDAR (already built) and HRTS models to include Te.

. . .

Imperial College London

Oliver Ford