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Talk Outline

 Project Outline

 Bayesian / forward modelling principles.

 A simple example: Interferometry inversion.

 Polarimetry:

 Basics

 Complications

 A side result: High Temperature Effects
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 Model for the basic physical 
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Current Tomography
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Bayesian Inference
From probability theory...  
Bayes Theorem:

P(  | D )  ∝  P( D |  )  P(  ) 
Posterior

PriorLikelihood

   – All free parameters in the system: Physical states n
e
, T

e
 and j as well as 

calibration parameters e.g. Lines of sight.
 Likelihood:  P(D|) – Probability that the system described by   will produce 

data D in presence of random noise.
 Posterior: P( |D) – Probability that system is really in state described by   

given that we have measured data D.
 Prior: P() – Prior knowledge (or lack of knowledge) of parameters before data 

was taken.
 P( |D) Encapsulates our knowledge of the system – Including all statistical and 

systematic erors, calibration uncertainty, correlations etc.
 Combining diagnostics: P(n

e
,T

e
, j | All Data) = 

 P(D
Polarimetry

 | n
e
, T

e
, j ) x P(D

Interferrometry
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e
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 As an example of Bayesian Methods

 Physical Parameters: Density parameterised as 1D linear 
interpolation of 30 nodes over ψ

N
.

Interferometry Inversion I
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 As an example of Bayesian Methods

 Physical Parameters: Density parameterised as 1D linear 
interpolation of 30 nodes over ψ

N
.

 Forward Function: Linear combination of the 30 nodes

Weights determined by 
surfaces and lines of sight.

 Likelihood: Each channel is Gaussian around f(n
e 
) with σ

d
 = 3 x 1017 m-2.

 Prior: Density must be positive:                                    . For positive n
e
, use a Gaussian 

centered at 0 with σ
p
 = 2 x 1020 m-3 to suggest each node should be in JETs operating 

regeime.

 Posterior: Rewrite likelihood and prior as multivariate Gaussians:

Interferometry Inversion I
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Interferometry Inversion II



  

Oliver Ford

Culham Student Meeting 15/8/8:
Bayesian Diagnostic Analysis.

 Multiply Gaussians and rewrite as f(n
e 
):

 Single (non-trivial) matrix inversion gives full posterior for density profile.

Truncated 
multivariate 
Gaussian.
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e 
):

 Single (non-trivial) matrix inversion gives full posterior for density profile.

 To examine the posterior, show maximum 
posterior and draw samples to represent 
uncertainty. 

 Looks messy! - but this is representing what 
the interferometry alone says about the n

e

profile. Any oscillating profile that 
does not change the line integral 
doesn't change the likelihood so 
is equally likely as a smooth one.

Truncated 
multivariate 
Gaussian.
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 Multiply Gaussians and rewrite as f(n
e 
):

 Single (non-trivial) matrix inversion gives full posterior for density profile.

 To examine the posterior, show maximum 
posterior and draw samples to represent 
uncertainty. 

 Looks messy! - but this is representing what 
the interferometry alone says about the n

e

profile. Any oscillating profile that 
does not change the line integral 
doesn't change the likelihood so 
is equally likely as a smooth one.

Posterior is very narrow and 
aligned to these oscillations.

Truncated 
multivariate 
Gaussian.

Interferometry Inversion II
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 If it is believed it should be smoother, this is prior knowledge, e.g Impose low probability 
for large difference between neighbouring nodes:

Interferometry Inversion III
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node:
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 If it is believed it should be smoother, this is prior knowledge, e.g Impose low probability 
for large difference between neighbouring nodes:

 Drawing 300 samples and plotting sample density for each node gives marginal for each 
node:

 Can now see density is better known where 
integration is more heavily weighted, i.e 
where the lines of sight are almost 
tangential to surfaces.

 This 'looks nicer', but the former posterior 
better represents what is actually known. 

 Many non-physical profiles are given a high 
probabilty in the former but the 'real' profile 
will also  be given a high probability.

 With the extra prior, sharp changes in the 
real profile will mean its given a low 
probability.

Interferometry Inversion III
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 Effect of plasma usually split into two cases:
 B // z: Faraday rotation:
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Polarimetry: Basic Principles

 Polarisation state described by rotation ψ and ellipticity tan χ.

ψ

χ

 

x

y

 Effect of plasma usually split into two cases:
 B // z: Faraday rotation:  B   z: Cotton-Mouton effect:

 For B at an arbitary angle θ to z and with large effects, these are not valid!

ψ = 45o to B
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Polarimetry: Full Model

 Better model[1] describes polarisation as stokes vector s:
[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)
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 Better model[1] describes polarisation as stokes vector s:
[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

Cold plasma model (Te < 5 keV):

 Typically one effect is minimised to avoid this, e.g. lateral channels.
 Forward modelling and Bayesian approaches allow maximum use of both effects.

Integrate along

line of sight.
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Polarimetry: Full Model

 Better model[1] describes polarisation as stokes vector s:
[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

Cold plasma model (Te < 5 keV):

 Typically one effect is minimised to avoid this, e.g. lateral channels.
 Forward modelling and Bayesian approaches allow maximum use of both effects.
 To test model: Perform interferometry inversion and draw 300 sample n

e
 profiles. 

Predict ψ and χ for each sample using B from EFIT. 
 This gives P( ψ | D, B ) and P( χ | D, B ) - what can be inferred about what ψ and 

χ 'should be', given only the interferometry data (and EFIT B).

Integrate along

line of sight.
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Compare these with measured values (at 500ms intervals for 1313 pulses)...
Channel 5: 
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Polarimetry: Comparison I (Channel 5)

Compare these with measured values (at 500ms intervals for 1313 pulses)...
Channel 5: 

Grey bands give 2σ of variation due to different n
e
 

profiles consistent with interferometry. Despite huge n
e

shape variation – these are quite well determined!
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Polarimetry: Comparison I (Channel 5)

Compare these with measured values (at 500ms intervals for 1313 pulses)...
Channel 5: Good agreement for both ψ and χ.

Can only make predictions for  this channel with the full 
model. χ is heavily dependant on ψ – provides extra 
information on Bpol. 

Grey bands give 2σ of variation due to different n
e
 

profiles consistent with interferometry. Despite huge n
e

shape variation – these are quite well determined!
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Polarimetry: Comparison II (Channel 3)

Channel 3 (core) shows a systematic disgreement on ψ during H-mode phase. 
Suspected due to inaccurate magnetic axis position from EFIT.
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Polarimetry: Comparison II (Channel 3)

Channel 3 (core) shows a systematic disgreement on ψ during H-mode phase. 
Suspected due to inaccurate magnetic axis position from EFIT.

Systematic disgreement at very high n
e
. - Calibration Suspected!!



  

Oliver Ford

Culham Student Meeting 15/8/8:
Bayesian Diagnostic Analysis.

 For Te > ~5keV, the cold plasma model (Ω
0 
) is not sufficient...

 High velocity electrons see Doppler shifted incident wave.
 Calculate polarisation evolution Ω in terms of dielectric tensor ε.

 Take ε from integration of Vlasov equation over Maxwellian.

 Expand in T
e
 and take linear terms [2].

 Leads to correction from the cold plasma of:

Polarimetry: High Te Effects

 But high velocity electrons also have relativistic mass increase.
 Take ε from integration of relativistic Vlasov equation over relativistic Maxwellian [3].

 Now have more terms linear in T
e
 but in the opposite direction:

[2]: S. E. Segre et al, Phys. Plasmas 9 2919 (2002)
[3]: V. V. Mirnov, Phys. Plasmas 14 102105 (2007)
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 Channel 3 passes through very core of plasma where Te can be up to 10KeV.

 For all but very high n
e
, χ of channel 3 works.

 Evaluate full model based on interferometry invesion for cold model and both 
corrections.

 Pulses with Te > 8keV and where calibration has worked well show clearly 
better agreement with Ω

2
:

Polarimetry: High Te Effects
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 In general, calibration and noise uncertainty 
are bigger than difference between the 
models. To prove it we must look at lots of 
data...

 300 pulses with Te > 5keV.

 Very slight systematic underestimate by Ω
0
 

and overestimate by Ω
1
. Ω

2
 looks straighter 

in comparison.

Polarimetry: High Te Effects

Cold Model -  Ω
0
 

Coloured by Te: 0KeV to 10KeV

χ
p
 -

 χ
m

χ
m

Non-relativistic - Ω
1

χ
p
 -

 χ
m

χ
m

χ
p
 -

 χ
m

Relativistic - Ω
2
 

χ
m
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Work In Progress

 Understand/fix polarimetry calibration!

 Develop probabalistic model for the polarimetry detectors.

 Combine magnetics, interferometry and polarimetry to simultaneously find     
P(n

e
, j | All Data) 

 Include LIDAR, Edge LIDAR (already built) and HRTS models to include Te.
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Oliver FordOliver Ford. . . 
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