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Talk Outline

 Project Outline

 Bayesian / forward modelling principles.

 A simple example: Interferometry inversion.

 Polarimetry:

 Basics

 Complications

 A side result: High Temperature Effects
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 Model for the basic physical 

quantities.

Current Tomography

B(R,Z)(R,Z)

P( Data | 'Real' Measurement )  - Likelihood

Data DataData Data
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using normal fits but 
this requires 
weighting and a 
difficult choice of 
which systems to trust 
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 Find the input parameters 
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Bayesian Inference
From probability theory...  
Bayes Theorem:

P( A | B ) =  P( B | A )  P( A ) 

P( B )
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Bayesian Inference
From probability theory...  
Bayes Theorem:

P(  | D )  ∝  P( D |  )  P(  ) 
Posterior

PriorLikelihood

   – All free parameters in the system: Physical states n
e
, T

e
 and j as well as 

calibration parameters e.g. Lines of sight.
 Likelihood:  P(D|) – Probability that the system described by   will produce 

data D in presence of random noise.
 Posterior: P( |D) – Probability that system is really in state described by   

given that we have measured data D.
 Prior: P() – Prior knowledge (or lack of knowledge) of parameters before data 

was taken.
 P( |D) Encapsulates our knowledge of the system – Including all statistical and 

systematic erors, calibration uncertainty, correlations etc.
 Combining diagnostics: P(n

e
,T

e
, j | All Data) = 

 P(D
Polarimetry

 | n
e
, T

e
, j ) x P(D

Interferrometry
 | n

e
)  x P(D

Magnetics
 | j ) x P(n

e
, T

e
, j)
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 As an example of Bayesian Methods

 Physical Parameters: Density parameterised as 1D linear 
interpolation of 30 nodes over ψ

N
.

Interferometry Inversion I
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 As an example of Bayesian Methods

 Physical Parameters: Density parameterised as 1D linear 
interpolation of 30 nodes over ψ

N
.

 Forward Function: Linear combination of the 30 nodes

Weights determined by 
surfaces and lines of sight.

 Likelihood: Each channel is Gaussian around f(n
e 
) with σ

d
 = 3 x 1017 m-2.

 Prior: Density must be positive:                                    . For positive n
e
, use a Gaussian 

centered at 0 with σ
p
 = 2 x 1020 m-3 to suggest each node should be in JETs operating 

regeime.

 Posterior: Rewrite likelihood and prior as multivariate Gaussians:

Interferometry Inversion I
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 Multiply Gaussians and rewrite as f(n
e 
):

.

Interferometry Inversion II
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 Single (non-trivial) matrix inversion gives full posterior for density profile.

Truncated 
multivariate 
Gaussian.

Interferometry Inversion II
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 Single (non-trivial) matrix inversion gives full posterior for density profile.

 To examine the posterior, show maximum 
posterior
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multivariate 
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e 
):

 Single (non-trivial) matrix inversion gives full posterior for density profile.

 To examine the posterior, show maximum 
posterior and draw samples to represent 
uncertainty. 

 Looks messy! - but this is representing what 
the interferometry alone says about the n

e

profile. Any oscillating profile that 
does not change the line integral 
doesn't change the likelihood so 
is equally likely as a smooth one.

Truncated 
multivariate 
Gaussian.

Interferometry Inversion II
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 Multiply Gaussians and rewrite as f(n
e 
):

 Single (non-trivial) matrix inversion gives full posterior for density profile.

 To examine the posterior, show maximum 
posterior and draw samples to represent 
uncertainty. 

 Looks messy! - but this is representing what 
the interferometry alone says about the n

e

profile. Any oscillating profile that 
does not change the line integral 
doesn't change the likelihood so 
is equally likely as a smooth one.

Posterior is very narrow and 
aligned to these oscillations.

Truncated 
multivariate 
Gaussian.

Interferometry Inversion II
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 If it is believed it should be smoother, this is prior knowledge, e.g Impose low probability 
for large difference between neighbouring nodes:

Interferometry Inversion III
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 Drawing 300 samples and plotting sample density for each node gives marginal for each 
node:

Interferometry Inversion III
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 If it is believed it should be smoother, this is prior knowledge, e.g Impose low probability 
for large difference between neighbouring nodes:

 Drawing 300 samples and plotting sample density for each node gives marginal for each 
node:

 Can now see density is better known where 
integration is more heavily weighted, i.e 
where the lines of sight are almost 
tangential to surfaces.

 This 'looks nicer', but the former posterior 
better represents what is actually known. 

 Many non-physical profiles are given a high 
probabilty in the former but the 'real' profile 
will also  be given a high probability.

 With the extra prior, sharp changes in the 
real profile will mean its given a low 
probability.

Interferometry Inversion III
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ψ

χ

 

x

y

 Effect of plasma usually split into two cases:
 B // z: Faraday rotation:
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Polarimetry: Basic Principles

 Polarisation state described by rotation ψ and ellipticity tan χ.

ψ

χ

 

x

y

 Effect of plasma usually split into two cases:
 B // z: Faraday rotation:  B   z: Cotton-Mouton effect:

 For B at an arbitary angle θ to z and with large effects, these are not valid!

ψ = 45o to B
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 Better model[1] describes polarisation as stokes vector s:
[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)
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Polarimetry: Full Model

 Better model[1] describes polarisation as stokes vector s:
[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

Cold plasma model (Te < 5 keV):

 Typically one effect is minimised to avoid this, e.g. lateral channels.
 Forward modelling and Bayesian approaches allow maximum use of both effects.

Integrate along

line of sight.
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Polarimetry: Full Model

 Better model[1] describes polarisation as stokes vector s:
[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

Cold plasma model (Te < 5 keV):

 Typically one effect is minimised to avoid this, e.g. lateral channels.
 Forward modelling and Bayesian approaches allow maximum use of both effects.
 To test model: Perform interferometry inversion and draw 300 sample n

e
 profiles. 

Predict ψ and χ for each sample using B from EFIT. 
 This gives P( ψ | D, B ) and P( χ | D, B ) - what can be inferred about what ψ and 

χ 'should be', given only the interferometry data (and EFIT B).

Integrate along

line of sight.
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Polarimetry: Comparison I (Channel 5)

Compare these with measured values (at 500ms intervals for 1313 pulses)...
Channel 5: 
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Polarimetry: Comparison I (Channel 5)

Compare these with measured values (at 500ms intervals for 1313 pulses)...
Channel 5: 

Grey bands give 2σ of variation due to different n
e
 

profiles consistent with interferometry. Despite huge n
e

shape variation – these are quite well determined!
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Polarimetry: Comparison I (Channel 5)

Compare these with measured values (at 500ms intervals for 1313 pulses)...
Channel 5: Good agreement for both ψ and χ.

Can only make predictions for  this channel with the full 
model. χ is heavily dependant on ψ – provides extra 
information on Bpol. 

Grey bands give 2σ of variation due to different n
e
 

profiles consistent with interferometry. Despite huge n
e

shape variation – these are quite well determined!
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Polarimetry: Comparison II (Channel 3)

Channel 3 (core) shows a systematic disgreement on ψ during H-mode phase. 
Suspected due to inaccurate magnetic axis position from EFIT.
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Polarimetry: Comparison II (Channel 3)

Channel 3 (core) shows a systematic disgreement on ψ during H-mode phase. 
Suspected due to inaccurate magnetic axis position from EFIT.

Systematic disgreement at very high n
e
. - Calibration Suspected!!
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 For Te > ~5keV, the cold plasma model (Ω
0 
) is not sufficient...

 High velocity electrons see Doppler shifted incident wave.
 Calculate polarisation evolution Ω in terms of dielectric tensor ε.

 Take ε from integration of Vlasov equation over Maxwellian.

 Expand in T
e
 and take linear terms [2].

 Leads to correction from the cold plasma of:

Polarimetry: High Te Effects

 But high velocity electrons also have relativistic mass increase.
 Take ε from integration of relativistic Vlasov equation over relativistic Maxwellian [3].

 Now have more terms linear in T
e
 but in the opposite direction:

[2]: S. E. Segre et al, Phys. Plasmas 9 2919 (2002)
[3]: V. V. Mirnov, Phys. Plasmas 14 102105 (2007)
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 Channel 3 passes through very core of plasma where Te can be up to 10KeV.

 For all but very high n
e
, χ of channel 3 works.

 Evaluate full model based on interferometry invesion for cold model and both 
corrections.

 Pulses with Te > 8keV and where calibration has worked well show clearly 
better agreement with Ω

2
:

Polarimetry: High Te Effects
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 In general, calibration and noise uncertainty 
are bigger than difference between the 
models. To prove it we must look at lots of 
data...

 300 pulses with Te > 5keV.

 Very slight systematic underestimate by Ω
0
 

and overestimate by Ω
1
. Ω

2
 looks straighter 

in comparison.

Polarimetry: High Te Effects

Cold Model -  Ω
0
 

Coloured by Te: 0KeV to 10KeV

χ
p
 -

 χ
m

χ
m

Non-relativistic - Ω
1

χ
p
 -

 χ
m

χ
m

χ
p
 -

 χ
m

Relativistic - Ω
2
 

χ
m
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Work In Progress

 Understand/fix polarimetry calibration!

 Develop probabalistic model for the polarimetry detectors.

 Combine magnetics, interferometry and polarimetry to simultaneously find     
P(n

e
, j | All Data) 

 Include LIDAR, Edge LIDAR (already built) and HRTS models to include Te.
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Oliver FordOliver Ford. . . 
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