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= Project Outline

= Bayesian / forward modelling principles.
= A simple example: Interferometry inversion.
= Polarimetry:

= Basics

= Complications

= A side result: High Temperature Effects
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Diagnostic Analysis.

_ > Model for the basic physical
guantities.

1 Models for the prediction of
other required quantities.

I Complete model for each diagnostic
system, predicting the data it
reports. The "Forward Function”.

Current Tomography

= Find the input parameters
which predict outputs
closest to those measured.

Magnetic Diagnostics Polarimetry

Interferometry Thomson
I I Scattering | - This can be done

using normal fits but
this requires

) ‘ ‘ weighting and a

3 E a difficult choice of

which systems to trust
more.




“ulham Student Meeting 15/8/8: |mperia| COIIege

Bayesian Diagnostic Analysis.

_ > Model for the basic physical
guantities.

1 Models for the prediction of
other required quantities.

I Complete model for each diagnostic
system, predicting the data it
reports. The "Forward Function”.

Current Tomography

e

= Find the input parameters
which predict outputs
closest to those measured.

Magnetic Diagnostics

Polarimetry ' e e

Scattering = This can be done
using normal fits but
this requires
weighting and a
difficult choice of
which systems to trust
more.

Interferometry

vy

P( Data | 'Real' Measurement ) - Likelihood
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From probability theory...
Bayes Theorem:

P(A[B)= P(B|A) P(A)

P(B)
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From probability theory...
Bayes Theorem:

P(Ww|D) oc P(D|p) P(u)

= - All free parameters in the system: Physical statesn , T_and j as well as
calibration parameters e.g. Lines of sight.
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Bayesian Inference

From probability theory... | ikelihood
Bayes Theorem: 4

P(w|D) o«c P(D|p) P(u)

= p —All free parameters in the system: Physical states n, T_and j as well as
calibration parameters e.g. Lines of sight.

= Likelihood: P(D|u) — Probability that the system described by p will produce
data D in presence of random noise.
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Bayesian Inference

From probability theory... | ikelihood
Bayes Theorem: 4
P(p|D) o« P(D|p) P(p)
Posterior

= p —All free parameters in the system: Physical states n, T_and j as well as
calibration parameters e.g. Lines of sight.

= Likelihood: P(D|u) — Probability that the system described by p will produce
data D in presence of random noise.

= Posterior: P(u|D) — Probability that system is really in state described by p
given that we have measured data D.
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Diagnostic Analysis.

Bayesian Inference

From probability theory... ilkali :
Bayes Theorem: lee“\hOOd e Prior

P(u|D) o« P(D|p) P(p)
Posterior

= p —All free parameters in the system: Physical states n, T_and j as well as
calibration parameters e.g. Lines of sight.

= Likelihood: P(D|u) — Probability that the system described by p will produce
data D in presence of random noise.

= Posterior: P(u|D) — Probability that system is really in state described by p
given that we have measured data D.

= Prior: P(1n) — Prior knowledge (or lack of knowledge) of parameters before data
was taken.
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Bayesian Inference

From probability theory... Likelihood :
Bayes Theorem: X e Prior

P(Ww|D) o«c P(D|p) P(u)

Posterior

= p —All free parameters in the system: Physical states n, T_and j as well as
calibration parameters e.g. Lines of sight.

= Likelihood: P(D|u) — Probability that the system described by p will produce
data D in presence of random noise.

= Posterior: P(u|D) — Probability that system is really in state described by p
given that we have measured data D.

= Prior: P(1n) — Prior knowledge (or lack of knowledge) of parameters before data
was taken.

= P(u|D) Encapsulates our knowledge of the system — Including all statistical and
systematic erors, calibration uncertainty, correlations etc.
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Bayesian Inference

From probability theory... Likelihood :
Bayes Theorem: X e Prior

Posterior

P(Ww|D) o«c P(D|u) P(u)
v

u — All free parameters in the system: Physical states n , T_and j as well as
calibration parameters e.g. Lines of sight.

Likelihood: P(D|u) — Probability that the system described by p will produce
data D in presence of random noise.

Posterior: P(u|D) — Probability that system is really in state described by p
given that we have measured data D.

Prior: P(u) — Prior knowledge (or lack of knowledge) of parameters before data
was taken.

P(u|D) Encapsulates our knowledge of the system — Including all statistical and
systematic erors, calibration uncertainty, correlations etc.
Combining diagnostics: P(n_, T , j | All Data) =

- P(D ln, T,1)xP(D |n) x P(D 1) xP(n, T,J)

Polarimetry Interferrometry Magnetics
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= As an example of Bayesian Methods

= Physical Parameters: Density parameterised as 1D linear

i i
LI —E @\
—

i T interpolation of 30 nodes over W,
. ‘ _— 6
M|rrors< il _ 7 ;
/ 8
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= Physical Parameters: Density parameterised as 1D linear
interpolation of 30 nodes over Y .

o~N O U

=  Forward Function: Linear combination of the 30 nodes

N
| _ N Weights determined by
fi (ne) = le Wij fe; surfaces and lines of sight.
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As an example of Bayesian Methods

= Physical Parameters: Density parameterised as 1D linear
interpolation of 30 nodes over Y .

o~N O U

=  Forward Function: Linear combination of the 30 nodes

N
| _ N Weights determined by
fi (ne) = ; Wij fe; surfaces and lines of sight.

- Likelihood: Each channel is Gaussian around f(n_) with g = 3 x 10" m”~.
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Interferometry Inversion |

As an example of Bayesian Methods

= Physical Parameters: Density parameterised as 1D linear
interpolation of 30 nodes over Y .

|
Mirrors < —— -
|

o~N O U

=  Forward Function: Linear combination of the 30 nodes

N
| _ y Weights determined by
fi (ne) = JZ; Wij fe; surfaces and lines of sight.

B
')

ZN

¥

- Likelihood: Each channel is Gaussian around f(n_) with g = 3 x 10" m”~.

Prior: Density must be positive: P (n.) = 0 for n. < 0. For positive n_, use a Gaussian
centered at O with o =2 x 10°° m” to suggest each node should be in JETs operating

regeime.
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As an example of Bayesian Methods

= Physical Parameters: Density parameterised as 1D linear
interpolation of 30 nodes over Y .

o~N O U

=  Forward Function: Linear combination of the 30 nodes
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- Likelihood: Each channel is Gaussian around f(n_) with g = 3 x 10" m”~.

N
| _ y Weights determined by
fi (ne) = le Wij fe; surfaces and lines of sight.

Prior: Density must be positive: P (n.) = 0 for n. < 0. For positive n_, use a Gaussian
centered at O with o =2 x 10°° m™ to suggest each node should be in JETs operating
regeime.

= Posterior: Rewrite likelihood and prior as multivariate Gaussians:

. \ _ q .
P (He(Q) X g(D’ W n, U:D) g(&a 0, J:P) for all n., >0
- 0 otherwise
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= Multiply Gaussians and rewrite as f(n_):



Imperial College
London

= Multiply Gaussians and rewrite as f(n_):

P (n.|D ()f I ne, >0
(n_|—) x  G{ne fe0, In, | TOT &L Tle; = Truncated

with ne = on, Wiop 'D multivariate

. Gaussian.
on, = (Wop W+ op ]

= Single (non-trivial) matrix inversion gives full posterior for density profile.
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Multiply Gaussians and rewrite as f(n_):
P(nD)

Q(P_e; @,%) for all n., >0

Truncated
with ne = on, Wiop 'D multivariate
e L Gaussian.

on = |Wop'W ot op |

Single (non-trivial) matrix inversion gives full posterior for density profile.

To examine the posterior, show maximum
posterior

ne / 10%°
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Multiply Gaussians and rewrite as f(n_):

P(n.|D (ne; Neo, n) for all n.. >0
(ne|D) o< G(ne; meo Jne i = Truncated

with nep = on. W'op 'D multivariate
e - Gaussian.
On, = [ETUD_IE-FUP_]]

Single (non-trivial) matrix inversion gives full posterior for density profile.

To examine the posterior, show maximum
posterior and draw samples to represent 12—
uncertainty.

Looks messy! - but this is representing what S
the interferometry alone says about the n_ <

profile. Any oscillating profile that o
does not change the line integral
doesn't change the likelihood so
Is equally likely as a smooth one. o,
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Interferometry Inversion Il

= Multiply Gaussians and rewrite as f(n_):
P(n.|D (ne; Neo, On ) for all n.. >0
(ne/D) o< G(ne; neo Ine = Truncated
with neg = on, W'op 'D multivariate
Gaussian.

9
On, = [WTUD_IE-I- UP_I}

= Single (non-trivial) matrix inversion gives full posterior for density profile.

= To examine the posterior, show maximum
posterior and draw samples to represent 12
uncertainty.

= Looks messy! - but this is representing what S
the interferometry alone says about the n_ <

profile. Any oscillating profile that o
does not change the line integral
doesn't change the likelihood so
Is equally likely as a smooth one. o,

as
=

aligned to these oscillations.

\ Posterior is very narrow and
\\

\\'})n'

ej



Imperial College
London

= |fitis believed it should be smoother, this is prior knowledge, e.g Impose low probability
for large difference between neighbouring nodes:

N-1
Ne, . .. — Ng.
P(&) X H g(( (JHA)’I,O J); 0, 0‘41\:}.) with O'df:"f = 2.5 x 10%
J=1
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= |fitis believed it should be smoother, this is prior knowledge, e.g Impose low probability
for large difference between neighbouring nodes:

N-1
Ne, . .. — Ng.
P(&) X H g(( (H_X’w J); 0, O'd!‘:;c) with O'd!:"f = 2.5 x 10%
J=1

pulse: 68547
time: 60.022

0.0 L) T 1 0.2 T 1 1 0.4 L) T 1 0.6 T T 1 0.8 L) T 1 1.0 T T 1
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¥ o~ = Bayesian Diagnostic Analysis.
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= If it is believed it should be smoother, this is prior knowledge, e.g Impose low probability
for large difference between neighbouring nodes:

P (F\Ie(;+1) - Are_;i) c 20
P(N.) x H G AV ; 0, T an. with Tane = 2.5 x 10

=  Drawing 300 samples and plotting sample density for each node gives marginal for each
node:
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Interferometry Inversion Il

If it is believed it should be smoother, this is prior knowledge, e.g Impose low probability
for large difference between neighbouring nodes:

N-1
P N (F\re(}+l) - j\lre;") . . T 20
(Neo) o |] ¢ o~ ; 0, oan. | with gan, = 2.5 x 10

Drawing 300 samples and plotting sample density for each node gives marginal for each
node:

= Can now see density is better known where
integration is more heavily weighted, i.e
where the lines of sight are almost
tangential to surfaces.

= This 'looks nicer', but the former posterior
better represents what is actually known.

= Many non-physical profiles are given a high
probabilty in the former but the 'real' profile
will also be given a high probability.

= With the extra prior, sharp changes in the
real profile will mean its given a low
probability.
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= Polarisation state described by rotation y and ellipticity ian 7.
X

<Y

= Effect of plasma usually split into two cases:
= B // z: Faraday rotation:

AY /B‘ Ne d2
Y =0
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Polarisation state described by rotation y and ellipticity (an .

X

>
W y
= Effect of plasma usually split into two cases:
= B // z: Faraday rotation: = B, z: Cotton-Mouton effect:
Al/)@(/B{nedz w=45°to B
v =0 - /Bi ne d>

For B at an arbitary angle 6 to z and with large effects, these are not valid!
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[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

= Better model™ describes polarisation as stokes vector s:

S

2X

*52
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[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

= Better model™ describes polarisation as stokes vector s:

S1
A d Integrate along

S
/ dz Q s line of sight.

)—sz

S3
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[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

= Better model™ describes polarisation as stokes vector s:

S1
| ds 0 Integrate along
/ dz — = line of sight.

Cold plasma model (Te < 5 keV):

>S r 2 2 2) T
= 2 2 (e/m)2 (B2 — By)
(e/m)” 2B,B,

O -
— 2 3 1 — 2 2
S5 cw (1 = we/w?) 2w (e/m) B,
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Polarimetry: Full Model

[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

= Better model™ describes polarisation as stokes vector s:
S
Al

ds
2= Q X S « Integrate along

line of sight.

Cold plasma model (Te < 5 keV):

>S, wg [ (6/?‘?1)2 (Bg — Bg) I
Q- - e/m 2B, B
2ew° (1 = we/w?) ZuE(é/n)l) B.

= Typically one effect is minimised to avoid this, e.g. lateral channels.
= Forward modelling and Bayesian approaches allow maximum use of both effects.
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Polarimetry: Full Model

[1]: S. E. Segre, Plasma Phys. Controlled Fusion 41, R57-R100 (1999)

= Better model™ describes polarisation as stokes vector s:
S
| ds __ 0O Integrate along
/ dz ~ X 5 i i
dz — — line of sight.

Cold plasma model (Te < 5 keV):

>S ( B )2 2 2\ ]
- 2 W2 Eeﬂmi? ég"'B B;)
2L 531 272 e/m z Dy
s’ 2CW (1 u)c/u) ) i 2u,»‘(€/ﬂl) B; )

= Typically one effect is minimised to avoid this, e.g. lateral channels.

= Forward modelling and Bayesian approaches allow maximum use of both effects.

= To test model: Perform interferometry inversion and draw 300 sample n_profiles.
Predict ) and y for each sample using B from EFIT.

= Thisgives P(yw | D, B) and P( y| D, B ) - what can be inferred about what ¢y and
'should be', given only the interferometry data (and EFIT B).
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Compare these with measured values (at 500ms intervals for 1313 pulses)...
Channel 5:
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Compare these with measured values (at 500ms intervals for 1313 pulses)...
Channel 5:

(¢

204

50
45"¢!
401

35
301
25
201
1951
101 !
45 50 85 60 65  time/s :

o
0 5 10 1520 25 30 35 40 45 50
Measured

Predicted

154

107




Imperial College
London

Compare these with measured values (at 500ms intervals for 1313 pulses)...
Channel 5:

(¢

204

50
45 fd)
40

35;
30
25
20
15:
1 10{ !

a5 | Grey bands give 20 of variation due to different n_ o

V.l
profiles consistent with interferometry. Despite huge n_ |0 S 101520253035 4045 50
shape variation — these are quite well determined! Measured

Predicted

154

107
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Polarimetry: Comparison | (Channel 5)

Compare these with measured values (at 500ms intervals for 1313 pulses)... B
Channel 5: Good agreement for both () and - o =
©
1!) 25- 9 45 1/) é
i L N
a0- 2 40, il =
5 © 35 -
157 & 30
: 25 q
‘I[I; 201
5: 15
! 10{ !
‘as ~ Grey bands give 20 of variation due to different n_ 5‘
profiles consistent with interferometry. Despite huge n_ %05 101520 25 30 36 40 45 50
shape variation — these are quite well determined! Measured
Can only make predictions for this channel with the full
model. }is heavily dependant on ) — provides extra =
information on Bpol. "]
X 39 ©
] ]
2 54 &
207 'ﬁ.h\(
z n wff“v“"*w\
1.5: P 1
§ MW
0.57 MJ, L\y
0.0 1 MHI«F‘*’#%MW . . L P
45 al a5 60 B5 time/!s

Measured
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Channel 3 (core) shows a systematic disgreement on (J/ during H-mode phase.
Suspected due to inaccurate magnetic axis position from EFIT. 5 45 I

14 ’¢’ ,
12 'l | |
10
8.

Predicte

ZA (\(M/dﬁ\\%

NV

(=]

0 2 4 6 8 10 12 14 16
Measured
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Polarimetry: Comparison Il (Channel 3)

Channel 3 (core) shows a systematic disgreement on (/ during H-mode phase.

Suspected due to inaccurate magnetic axis position from EFIT.

Q

3

=

©

@

_

o
L-Mode
—

Systematic disgreement at very high n_. - Calibration Suspected!!

©

Q

-

h

=)

)

—

(a

16 |

14 ¢| | il

1 7

12 Sl
L I|i

10 [I '|

81 T

6.

4-

o f'

3

0 s e . A I A

0 2 4 6 8 10 12 14 16
Measured

9

3 X I o

6; ﬁpﬁ

5 g

41 y

3' ll__ =

21 '.j"‘

.

o —r——r——r——r——r——r——r——r—

01 23 456 7 8 9

Measured

%

ZA (W/V/Jw\\\%
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Polari

R
=

metry: High Te Effects

- For Te > ~5keV, the cold plasma model (€2) is not sufficient...

= High velocity electrons see Doppler shifted incident wave.
= Calculate polarisation evolution € in terms of dielectric tensor €.
= Take € from integration of Vlasov equation over Maxwellian.

- ExpandinT_and take linear terms [2].

= Leads to correction from the cold plasma of:

T 12 QU1

Ql ~ QO + 62 12 Q(}2
- - mc

i 3 QDQ

= But high velocity electrons also have relativistic mass increase.
= Take & from integration of relativistic Vlasov equation over relativistic Maxwellian [3].

= Now have more terms linear in T_but in the opposite direction:

- 1 -
r [ 4
€
QQ ~ Q.[] + > 4 ) Qf}z
mc 2 Q [2]: S. E. Segre et al, Phys. Plasmas 9 2919 (2002)
B o [}2 [3]: V. V. Mirnov, Phys. Plasmas 14 102105 (2007)
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Polarimetry: High Te Effects

= Channel 3 passes through very core of plasma where Te can be up to 10KeV. /
= For all but very high n_, » of channel 3 works.

= Evaluate full model based on interferometry invesion for cold model and both
corrections.

A (W/WA\\\H/Z

= Pulses with Te > 8keV and where calibration has worked well show clearly
better agreement with Q_:

9

e o

257 e Measurement
45 46 47
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Polarimetry: High Te Effects

Coloured by Te: OKeV to 10KeV

Cold Model - QO

rF J\J _.' L [ 1 hggr
il
R R
f 5 i g
g Rl o] -“m}.'#"l' L
N I|.r| W ﬁ-ﬂt:'i',".."l'ﬂ']'?'.'lll;.ll..'i .|.: |
1 :illllulII 1

i Z 3 4 5 B F"XB
m

ativistic - Ql

In general, calibration and noise uncertainty
are bigger than difference between the
models. To prove it we must look at lots of
data...

300 pulses with Te > 5keV.

Very slight systematic underestimate by Q_
and overestimate by Q . Q_looks straighter
iIn comparison.
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Understand/fix polarimetry calibration!

Develop probabalistic model for the polarimetry detectors.

Combine magnetics, interferometry and polarimetry to simultaneously find
P(n_, j | All Data)

Include LIDAR, Edge LIDAR (already built) and HRTS models to include Te.
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